This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prodgt02 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐵 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 5 | 4 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 < ( 𝐵 · 𝐴 ) ) ) |
| 6 | 5 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) → 0 < ( 𝐵 · 𝐴 ) ) ) |
| 7 | prodgt0 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) ) → 0 < 𝐴 ) | |
| 8 | 7 | ex | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) → 0 < 𝐴 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) → 0 < 𝐴 ) ) |
| 10 | 6 9 | sylan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐴 ) ) |
| 11 | 10 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐵 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐴 ) |