This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | ||
| Assertion | supmullem1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| 2 | supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | oveq1 | ⊢ ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
| 8 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) ) | |
| 9 | 8 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 10 | 7 9 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 11 | 3 10 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 12 | 2 | simp2bi | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 14 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 15 | 14 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ℝ ) |
| 16 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 17 | 12 16 | syl | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 19 | 2 | simp3bi | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 20 | 19 | simp1d | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 21 | 20 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 22 | 21 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ ℝ ) |
| 23 | suprcl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 24 | 19 23 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 26 | simp1l | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) | |
| 27 | 2 26 | sylbi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) |
| 28 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) ) | |
| 29 | 28 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
| 30 | 27 29 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 0 ≤ 𝑎 ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ≤ 𝑎 ) |
| 33 | simp1r | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) | |
| 34 | 2 33 | sylbi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
| 35 | breq2 | ⊢ ( 𝑥 = 𝑏 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑏 ) ) | |
| 36 | 35 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
| 37 | 34 36 | syl | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝑏 ) |
| 39 | 38 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ≤ 𝑏 ) |
| 40 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 41 | 12 40 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 42 | 41 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 43 | suprub | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) | |
| 44 | 19 43 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 45 | 44 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 46 | 15 18 22 25 32 39 42 45 | lemul12ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 48 | breq1 | ⊢ ( 𝑤 = ( 𝑎 · 𝑏 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ↔ ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 49 | 48 | biimprcd | ⊢ ( ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 50 | 47 49 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) ) |
| 51 | 50 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 52 | 11 51 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 53 | 52 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |