This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over multiplication, in the sense that ( sup A ) x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { a x. b | a e. A , b e. B } and is defined as C below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp ). (Contributed by Mario Carneiro, 5-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | ||
| Assertion | supmul | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| 2 | supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | |
| 3 | 2 | simp2bi | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 4 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 6 | 2 | simp3bi | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 7 | suprcl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 9 | recn | ⊢ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) | |
| 10 | recn | ⊢ ( sup ( 𝐵 , ℝ , < ) ∈ ℝ → sup ( 𝐵 , ℝ , < ) ∈ ℂ ) | |
| 11 | mulcom | ⊢ ( ( sup ( 𝐴 , ℝ , < ) ∈ ℂ ∧ sup ( 𝐵 , ℝ , < ) ∈ ℂ ) → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = ( sup ( 𝐵 , ℝ , < ) · sup ( 𝐴 , ℝ , < ) ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ sup ( 𝐵 , ℝ , < ) ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = ( sup ( 𝐵 , ℝ , < ) · sup ( 𝐴 , ℝ , < ) ) ) |
| 13 | 5 8 12 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = ( sup ( 𝐵 , ℝ , < ) · sup ( 𝐴 , ℝ , < ) ) ) |
| 14 | 6 | simp2d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 15 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐵 ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → ∃ 𝑏 𝑏 ∈ 𝐵 ) |
| 17 | 0red | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ∈ ℝ ) | |
| 18 | 6 | simp1d | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 19 | 18 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 20 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 21 | simp1r | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) | |
| 22 | 2 21 | sylbi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
| 23 | breq2 | ⊢ ( 𝑥 = 𝑏 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑏 ) ) | |
| 24 | 23 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝑏 ) |
| 27 | suprub | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) | |
| 28 | 6 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 29 | 17 19 20 26 28 | letrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 30 | 16 29 | exlimddv | ⊢ ( 𝜑 → 0 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 31 | simp1l | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) | |
| 32 | 2 31 | sylbi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) |
| 33 | eqid | ⊢ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } | |
| 34 | biid | ⊢ ( ( ( sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ 0 ≤ sup ( 𝐵 , ℝ , < ) ∧ ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ↔ ( ( sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ 0 ≤ sup ( 𝐵 , ℝ , < ) ∧ ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) | |
| 35 | 33 34 | supmul1 | ⊢ ( ( ( sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ 0 ≤ sup ( 𝐵 , ℝ , < ) ∧ ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) → ( sup ( 𝐵 , ℝ , < ) · sup ( 𝐴 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ) |
| 36 | 8 30 32 3 35 | syl31anc | ⊢ ( 𝜑 → ( sup ( 𝐵 , ℝ , < ) · sup ( 𝐴 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ) |
| 37 | 13 36 | eqtrd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ) |
| 38 | vex | ⊢ 𝑤 ∈ V | |
| 39 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ↔ 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) ) | |
| 40 | 39 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) ) |
| 41 | 38 40 | elab | ⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) |
| 42 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 43 | 3 | simp1d | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 44 | 43 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 45 | recn | ⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) | |
| 46 | mulcom | ⊢ ( ( sup ( 𝐵 , ℝ , < ) ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) = ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) ) | |
| 47 | 10 45 46 | syl2an | ⊢ ( ( sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) = ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) ) |
| 48 | 42 44 47 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) = ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) ) |
| 49 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) ) | |
| 50 | 49 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
| 51 | 32 50 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
| 52 | 51 | imp | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 0 ≤ 𝑎 ) |
| 53 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
| 54 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 55 | eqid | ⊢ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } = { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } | |
| 56 | biid | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ↔ ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | |
| 57 | 55 56 | supmul1 | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } , ℝ , < ) ) |
| 58 | 44 52 53 54 57 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } , ℝ , < ) ) |
| 59 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) ) | |
| 60 | 59 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 61 | 38 60 | elab | ⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 62 | rspe | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 63 | oveq1 | ⊢ ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) ) | |
| 64 | 63 | eqeq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 65 | 64 | rexbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 66 | 65 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
| 67 | 59 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 68 | 66 67 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 69 | 38 68 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 70 | 62 69 | sylibr | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) → 𝑤 ∈ 𝐶 ) |
| 71 | 70 | ex | ⊢ ( 𝑎 ∈ 𝐴 → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ 𝐶 ) ) |
| 72 | 1 2 | supmullem2 | ⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |
| 73 | suprub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) | |
| 74 | 73 | ex | ⊢ ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 75 | 72 74 | syl | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 76 | 71 75 | sylan9r | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 77 | 61 76 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 78 | 77 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 79 | 44 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ ℝ ) |
| 80 | 19 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 81 | 79 80 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
| 82 | eleq1a | ⊢ ( ( 𝑎 · 𝑏 ) ∈ ℝ → ( 𝑧 = ( 𝑎 · 𝑏 ) → 𝑧 ∈ ℝ ) ) | |
| 83 | 81 82 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑧 = ( 𝑎 · 𝑏 ) → 𝑧 ∈ ℝ ) ) |
| 84 | 83 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) → 𝑧 ∈ ℝ ) ) |
| 85 | 84 | abssdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ⊆ ℝ ) |
| 86 | ovex | ⊢ ( 𝑎 · 𝑏 ) ∈ V | |
| 87 | 86 | isseti | ⊢ ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
| 88 | 87 | rgenw | ⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
| 89 | r19.2z | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 90 | 14 88 89 | sylancl | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 91 | rexcom4 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 92 | 90 91 | sylib | ⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 93 | 60 | cbvexvw | ⊢ ( ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 94 | 92 93 | sylibr | ⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
| 95 | abn0 | ⊢ ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) | |
| 96 | 94 95 | sylibr | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ≠ ∅ ) |
| 97 | 96 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ≠ ∅ ) |
| 98 | suprcl | ⊢ ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) | |
| 99 | 72 98 | syl | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 101 | brralrspcev | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ 𝑥 ) | |
| 102 | 100 78 101 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ 𝑥 ) |
| 103 | suprleub | ⊢ ( ( ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ 𝑥 ) ∧ sup ( 𝐶 , ℝ , < ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 104 | 85 97 102 100 103 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 105 | 78 104 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 106 | 58 105 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 · sup ( 𝐵 , ℝ , < ) ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 107 | 48 106 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 108 | breq1 | ⊢ ( 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → ( 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ↔ ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 109 | 107 108 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 110 | 109 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 111 | 41 110 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 112 | 111 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 113 | 42 44 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ∈ ℝ ) |
| 114 | eleq1a | ⊢ ( ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ∈ ℝ → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → 𝑧 ∈ ℝ ) ) | |
| 115 | 113 114 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → 𝑧 ∈ ℝ ) ) |
| 116 | 115 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) → 𝑧 ∈ ℝ ) ) |
| 117 | 116 | abssdv | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ⊆ ℝ ) |
| 118 | 3 | simp2d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 119 | ovex | ⊢ ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ∈ V | |
| 120 | 119 | isseti | ⊢ ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) |
| 121 | 120 | rgenw | ⊢ ∀ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) |
| 122 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) | |
| 123 | 118 121 122 | sylancl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) |
| 124 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ↔ ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) | |
| 125 | 123 124 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) |
| 126 | abn0 | ⊢ ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) ) | |
| 127 | 125 126 | sylibr | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ≠ ∅ ) |
| 128 | brralrspcev | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ 𝑥 ) | |
| 129 | 99 112 128 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ 𝑥 ) |
| 130 | suprleub | ⊢ ( ( ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ 𝑥 ) ∧ sup ( 𝐶 , ℝ , < ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 131 | 117 127 129 99 130 | syl31anc | ⊢ ( 𝜑 → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 132 | 112 131 | mpbird | ⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) · 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 133 | 37 132 | eqbrtrd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 134 | 1 2 | supmullem1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
| 135 | 5 8 | remulcld | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) |
| 136 | suprleub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 137 | 72 135 136 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 138 | 134 137 | mpbird | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
| 139 | 135 99 | letri3d | ⊢ ( 𝜑 → ( ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ↔ ( ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) ) |
| 140 | 133 138 139 | mpbir2and | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |