This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over multiplication, in the sense that A x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { A x. b | b e. B } and is defined as C below. This is the simple version, with only one set argument; see supmul for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul1.1 | |- C = { z | E. v e. B z = ( A x. v ) } |
|
| supmul1.2 | |- ( ph <-> ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
||
| Assertion | supmul1 | |- ( ph -> ( A x. sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul1.1 | |- C = { z | E. v e. B z = ( A x. v ) } |
|
| 2 | supmul1.2 | |- ( ph <-> ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
|
| 3 | vex | |- w e. _V |
|
| 4 | oveq2 | |- ( v = b -> ( A x. v ) = ( A x. b ) ) |
|
| 5 | 4 | eqeq2d | |- ( v = b -> ( z = ( A x. v ) <-> z = ( A x. b ) ) ) |
| 6 | 5 | cbvrexvw | |- ( E. v e. B z = ( A x. v ) <-> E. b e. B z = ( A x. b ) ) |
| 7 | eqeq1 | |- ( z = w -> ( z = ( A x. b ) <-> w = ( A x. b ) ) ) |
|
| 8 | 7 | rexbidv | |- ( z = w -> ( E. b e. B z = ( A x. b ) <-> E. b e. B w = ( A x. b ) ) ) |
| 9 | 6 8 | bitrid | |- ( z = w -> ( E. v e. B z = ( A x. v ) <-> E. b e. B w = ( A x. b ) ) ) |
| 10 | 3 9 1 | elab2 | |- ( w e. C <-> E. b e. B w = ( A x. b ) ) |
| 11 | simpr | |- ( ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
|
| 12 | 2 11 | sylbi | |- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 13 | 12 | simp1d | |- ( ph -> B C_ RR ) |
| 14 | 13 | sselda | |- ( ( ph /\ b e. B ) -> b e. RR ) |
| 15 | suprcl | |- ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) -> sup ( B , RR , < ) e. RR ) |
|
| 16 | 12 15 | syl | |- ( ph -> sup ( B , RR , < ) e. RR ) |
| 17 | 16 | adantr | |- ( ( ph /\ b e. B ) -> sup ( B , RR , < ) e. RR ) |
| 18 | simpl1 | |- ( ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A e. RR ) |
|
| 19 | 2 18 | sylbi | |- ( ph -> A e. RR ) |
| 20 | simpl2 | |- ( ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> 0 <_ A ) |
|
| 21 | 2 20 | sylbi | |- ( ph -> 0 <_ A ) |
| 22 | 19 21 | jca | |- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ b e. B ) -> ( A e. RR /\ 0 <_ A ) ) |
| 24 | suprub | |- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
|
| 25 | 12 24 | sylan | |- ( ( ph /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 26 | lemul2a | |- ( ( ( b e. RR /\ sup ( B , RR , < ) e. RR /\ ( A e. RR /\ 0 <_ A ) ) /\ b <_ sup ( B , RR , < ) ) -> ( A x. b ) <_ ( A x. sup ( B , RR , < ) ) ) |
|
| 27 | 14 17 23 25 26 | syl31anc | |- ( ( ph /\ b e. B ) -> ( A x. b ) <_ ( A x. sup ( B , RR , < ) ) ) |
| 28 | breq1 | |- ( w = ( A x. b ) -> ( w <_ ( A x. sup ( B , RR , < ) ) <-> ( A x. b ) <_ ( A x. sup ( B , RR , < ) ) ) ) |
|
| 29 | 27 28 | syl5ibrcom | |- ( ( ph /\ b e. B ) -> ( w = ( A x. b ) -> w <_ ( A x. sup ( B , RR , < ) ) ) ) |
| 30 | 29 | rexlimdva | |- ( ph -> ( E. b e. B w = ( A x. b ) -> w <_ ( A x. sup ( B , RR , < ) ) ) ) |
| 31 | 10 30 | biimtrid | |- ( ph -> ( w e. C -> w <_ ( A x. sup ( B , RR , < ) ) ) ) |
| 32 | 31 | ralrimiv | |- ( ph -> A. w e. C w <_ ( A x. sup ( B , RR , < ) ) ) |
| 33 | 19 | adantr | |- ( ( ph /\ b e. B ) -> A e. RR ) |
| 34 | 33 14 | remulcld | |- ( ( ph /\ b e. B ) -> ( A x. b ) e. RR ) |
| 35 | eleq1a | |- ( ( A x. b ) e. RR -> ( w = ( A x. b ) -> w e. RR ) ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ b e. B ) -> ( w = ( A x. b ) -> w e. RR ) ) |
| 37 | 36 | rexlimdva | |- ( ph -> ( E. b e. B w = ( A x. b ) -> w e. RR ) ) |
| 38 | 10 37 | biimtrid | |- ( ph -> ( w e. C -> w e. RR ) ) |
| 39 | 38 | ssrdv | |- ( ph -> C C_ RR ) |
| 40 | simpr2 | |- ( ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> B =/= (/) ) |
|
| 41 | 2 40 | sylbi | |- ( ph -> B =/= (/) ) |
| 42 | ovex | |- ( A x. b ) e. _V |
|
| 43 | 42 | isseti | |- E. w w = ( A x. b ) |
| 44 | 43 | rgenw | |- A. b e. B E. w w = ( A x. b ) |
| 45 | r19.2z | |- ( ( B =/= (/) /\ A. b e. B E. w w = ( A x. b ) ) -> E. b e. B E. w w = ( A x. b ) ) |
|
| 46 | 41 44 45 | sylancl | |- ( ph -> E. b e. B E. w w = ( A x. b ) ) |
| 47 | 10 | exbii | |- ( E. w w e. C <-> E. w E. b e. B w = ( A x. b ) ) |
| 48 | n0 | |- ( C =/= (/) <-> E. w w e. C ) |
|
| 49 | rexcom4 | |- ( E. b e. B E. w w = ( A x. b ) <-> E. w E. b e. B w = ( A x. b ) ) |
|
| 50 | 47 48 49 | 3bitr4i | |- ( C =/= (/) <-> E. b e. B E. w w = ( A x. b ) ) |
| 51 | 46 50 | sylibr | |- ( ph -> C =/= (/) ) |
| 52 | 19 16 | remulcld | |- ( ph -> ( A x. sup ( B , RR , < ) ) e. RR ) |
| 53 | brralrspcev | |- ( ( ( A x. sup ( B , RR , < ) ) e. RR /\ A. w e. C w <_ ( A x. sup ( B , RR , < ) ) ) -> E. x e. RR A. w e. C w <_ x ) |
|
| 54 | 52 32 53 | syl2anc | |- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 55 | 39 51 54 | 3jca | |- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| 56 | suprleub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( A x. sup ( B , RR , < ) ) e. RR ) -> ( sup ( C , RR , < ) <_ ( A x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( A x. sup ( B , RR , < ) ) ) ) |
|
| 57 | 55 52 56 | syl2anc | |- ( ph -> ( sup ( C , RR , < ) <_ ( A x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( A x. sup ( B , RR , < ) ) ) ) |
| 58 | 32 57 | mpbird | |- ( ph -> sup ( C , RR , < ) <_ ( A x. sup ( B , RR , < ) ) ) |
| 59 | simpr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) |
|
| 60 | suprcl | |- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> sup ( C , RR , < ) e. RR ) |
|
| 61 | 55 60 | syl | |- ( ph -> sup ( C , RR , < ) e. RR ) |
| 62 | 61 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> sup ( C , RR , < ) e. RR ) |
| 63 | 16 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> sup ( B , RR , < ) e. RR ) |
| 64 | 19 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> A e. RR ) |
| 65 | n0 | |- ( B =/= (/) <-> E. b b e. B ) |
|
| 66 | 0red | |- ( ( ph /\ b e. B ) -> 0 e. RR ) |
|
| 67 | simpl3 | |- ( ( ( A e. RR /\ 0 <_ A /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A. x e. B 0 <_ x ) |
|
| 68 | 2 67 | sylbi | |- ( ph -> A. x e. B 0 <_ x ) |
| 69 | breq2 | |- ( x = b -> ( 0 <_ x <-> 0 <_ b ) ) |
|
| 70 | 69 | rspccva | |- ( ( A. x e. B 0 <_ x /\ b e. B ) -> 0 <_ b ) |
| 71 | 68 70 | sylan | |- ( ( ph /\ b e. B ) -> 0 <_ b ) |
| 72 | 66 14 17 71 25 | letrd | |- ( ( ph /\ b e. B ) -> 0 <_ sup ( B , RR , < ) ) |
| 73 | 72 | ex | |- ( ph -> ( b e. B -> 0 <_ sup ( B , RR , < ) ) ) |
| 74 | 73 | exlimdv | |- ( ph -> ( E. b b e. B -> 0 <_ sup ( B , RR , < ) ) ) |
| 75 | 65 74 | biimtrid | |- ( ph -> ( B =/= (/) -> 0 <_ sup ( B , RR , < ) ) ) |
| 76 | 41 75 | mpd | |- ( ph -> 0 <_ sup ( B , RR , < ) ) |
| 77 | 76 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 <_ sup ( B , RR , < ) ) |
| 78 | 0red | |- ( ( ph /\ w e. C ) -> 0 e. RR ) |
|
| 79 | 38 | imp | |- ( ( ph /\ w e. C ) -> w e. RR ) |
| 80 | 61 | adantr | |- ( ( ph /\ w e. C ) -> sup ( C , RR , < ) e. RR ) |
| 81 | 21 | adantr | |- ( ( ph /\ b e. B ) -> 0 <_ A ) |
| 82 | 33 14 81 71 | mulge0d | |- ( ( ph /\ b e. B ) -> 0 <_ ( A x. b ) ) |
| 83 | breq2 | |- ( w = ( A x. b ) -> ( 0 <_ w <-> 0 <_ ( A x. b ) ) ) |
|
| 84 | 82 83 | syl5ibrcom | |- ( ( ph /\ b e. B ) -> ( w = ( A x. b ) -> 0 <_ w ) ) |
| 85 | 84 | rexlimdva | |- ( ph -> ( E. b e. B w = ( A x. b ) -> 0 <_ w ) ) |
| 86 | 10 85 | biimtrid | |- ( ph -> ( w e. C -> 0 <_ w ) ) |
| 87 | 86 | imp | |- ( ( ph /\ w e. C ) -> 0 <_ w ) |
| 88 | suprub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
|
| 89 | 55 88 | sylan | |- ( ( ph /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 90 | 78 79 80 87 89 | letrd | |- ( ( ph /\ w e. C ) -> 0 <_ sup ( C , RR , < ) ) |
| 91 | 90 | ex | |- ( ph -> ( w e. C -> 0 <_ sup ( C , RR , < ) ) ) |
| 92 | 91 | exlimdv | |- ( ph -> ( E. w w e. C -> 0 <_ sup ( C , RR , < ) ) ) |
| 93 | 48 92 | biimtrid | |- ( ph -> ( C =/= (/) -> 0 <_ sup ( C , RR , < ) ) ) |
| 94 | 51 93 | mpd | |- ( ph -> 0 <_ sup ( C , RR , < ) ) |
| 95 | 94 | anim1i | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( 0 <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) ) |
| 96 | 0red | |- ( ph -> 0 e. RR ) |
|
| 97 | lelttr | |- ( ( 0 e. RR /\ sup ( C , RR , < ) e. RR /\ ( A x. sup ( B , RR , < ) ) e. RR ) -> ( ( 0 <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 < ( A x. sup ( B , RR , < ) ) ) ) |
|
| 98 | 96 61 52 97 | syl3anc | |- ( ph -> ( ( 0 <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 < ( A x. sup ( B , RR , < ) ) ) ) |
| 99 | 98 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( ( 0 <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 < ( A x. sup ( B , RR , < ) ) ) ) |
| 100 | 95 99 | mpd | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 < ( A x. sup ( B , RR , < ) ) ) |
| 101 | prodgt02 | |- ( ( ( A e. RR /\ sup ( B , RR , < ) e. RR ) /\ ( 0 <_ sup ( B , RR , < ) /\ 0 < ( A x. sup ( B , RR , < ) ) ) ) -> 0 < A ) |
|
| 102 | 64 63 77 100 101 | syl22anc | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> 0 < A ) |
| 103 | ltdivmul | |- ( ( sup ( C , RR , < ) e. RR /\ sup ( B , RR , < ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( sup ( C , RR , < ) / A ) < sup ( B , RR , < ) <-> sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) ) |
|
| 104 | 62 63 64 102 103 | syl112anc | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( ( sup ( C , RR , < ) / A ) < sup ( B , RR , < ) <-> sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) ) |
| 105 | 59 104 | mpbird | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( sup ( C , RR , < ) / A ) < sup ( B , RR , < ) ) |
| 106 | 12 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 107 | 102 | gt0ne0d | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> A =/= 0 ) |
| 108 | 62 64 107 | redivcld | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( sup ( C , RR , < ) / A ) e. RR ) |
| 109 | suprlub | |- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ ( sup ( C , RR , < ) / A ) e. RR ) -> ( ( sup ( C , RR , < ) / A ) < sup ( B , RR , < ) <-> E. b e. B ( sup ( C , RR , < ) / A ) < b ) ) |
|
| 110 | 106 108 109 | syl2anc | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> ( ( sup ( C , RR , < ) / A ) < sup ( B , RR , < ) <-> E. b e. B ( sup ( C , RR , < ) / A ) < b ) ) |
| 111 | 105 110 | mpbid | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> E. b e. B ( sup ( C , RR , < ) / A ) < b ) |
| 112 | 34 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> ( A x. b ) e. RR ) |
| 113 | 61 | ad2antrr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> sup ( C , RR , < ) e. RR ) |
| 114 | rspe | |- ( ( b e. B /\ w = ( A x. b ) ) -> E. b e. B w = ( A x. b ) ) |
|
| 115 | 114 10 | sylibr | |- ( ( b e. B /\ w = ( A x. b ) ) -> w e. C ) |
| 116 | 115 | adantl | |- ( ( ph /\ ( b e. B /\ w = ( A x. b ) ) ) -> w e. C ) |
| 117 | simplrr | |- ( ( ( ph /\ ( b e. B /\ w = ( A x. b ) ) ) /\ w e. C ) -> w = ( A x. b ) ) |
|
| 118 | 89 | adantlr | |- ( ( ( ph /\ ( b e. B /\ w = ( A x. b ) ) ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 119 | 117 118 | eqbrtrrd | |- ( ( ( ph /\ ( b e. B /\ w = ( A x. b ) ) ) /\ w e. C ) -> ( A x. b ) <_ sup ( C , RR , < ) ) |
| 120 | 116 119 | mpdan | |- ( ( ph /\ ( b e. B /\ w = ( A x. b ) ) ) -> ( A x. b ) <_ sup ( C , RR , < ) ) |
| 121 | 120 | expr | |- ( ( ph /\ b e. B ) -> ( w = ( A x. b ) -> ( A x. b ) <_ sup ( C , RR , < ) ) ) |
| 122 | 121 | exlimdv | |- ( ( ph /\ b e. B ) -> ( E. w w = ( A x. b ) -> ( A x. b ) <_ sup ( C , RR , < ) ) ) |
| 123 | 43 122 | mpi | |- ( ( ph /\ b e. B ) -> ( A x. b ) <_ sup ( C , RR , < ) ) |
| 124 | 123 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> ( A x. b ) <_ sup ( C , RR , < ) ) |
| 125 | 112 113 124 | lensymd | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> -. sup ( C , RR , < ) < ( A x. b ) ) |
| 126 | 14 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> b e. RR ) |
| 127 | 19 | ad2antrr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> A e. RR ) |
| 128 | 102 | adantr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> 0 < A ) |
| 129 | ltdivmul | |- ( ( sup ( C , RR , < ) e. RR /\ b e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( sup ( C , RR , < ) / A ) < b <-> sup ( C , RR , < ) < ( A x. b ) ) ) |
|
| 130 | 113 126 127 128 129 | syl112anc | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> ( ( sup ( C , RR , < ) / A ) < b <-> sup ( C , RR , < ) < ( A x. b ) ) ) |
| 131 | 125 130 | mtbird | |- ( ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) /\ b e. B ) -> -. ( sup ( C , RR , < ) / A ) < b ) |
| 132 | 131 | nrexdv | |- ( ( ph /\ sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) -> -. E. b e. B ( sup ( C , RR , < ) / A ) < b ) |
| 133 | 111 132 | pm2.65da | |- ( ph -> -. sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) |
| 134 | 58 133 | jca | |- ( ph -> ( sup ( C , RR , < ) <_ ( A x. sup ( B , RR , < ) ) /\ -. sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) ) |
| 135 | 61 52 | eqleltd | |- ( ph -> ( sup ( C , RR , < ) = ( A x. sup ( B , RR , < ) ) <-> ( sup ( C , RR , < ) <_ ( A x. sup ( B , RR , < ) ) /\ -. sup ( C , RR , < ) < ( A x. sup ( B , RR , < ) ) ) ) ) |
| 136 | 134 135 | mpbird | |- ( ph -> sup ( C , RR , < ) = ( A x. sup ( B , RR , < ) ) ) |
| 137 | 136 | eqcomd | |- ( ph -> ( A x. sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |