This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 4 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 5 | 01sqrex | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) | |
| 6 | rprege0 | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 7 | 6 | anim1i | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 8 | anass | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 10 | 9 | adantrl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 11 | 10 | reximi2 | ⊢ ( ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 12 | 5 11 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 13 | 4 12 | sylanbr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 14 | 13 | exp31 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
| 15 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 16 | id | ⊢ ( 0 = 𝐴 → 0 = 𝐴 ) | |
| 17 | 15 16 | eqtrid | ⊢ ( 0 = 𝐴 → ( 0 ↑ 2 ) = 𝐴 ) |
| 18 | 0le0 | ⊢ 0 ≤ 0 | |
| 19 | 17 18 | jctil | ⊢ ( 0 = 𝐴 → ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) |
| 20 | breq2 | ⊢ ( 𝑥 = 0 → ( 0 ≤ 𝑥 ↔ 0 ≤ 0 ) ) | |
| 21 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = ( 0 ↑ 2 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( 0 ↑ 2 ) = 𝐴 ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑥 = 0 → ( ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 25 | 1 19 24 | sylancr | ⊢ ( 0 = 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 26 | 25 | a1i13 | ⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
| 27 | 14 26 | jaod | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
| 28 | 3 27 | sylbid | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
| 29 | 28 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 30 | 0lt1 | ⊢ 0 < 1 | |
| 31 | 1re | ⊢ 1 ∈ ℝ | |
| 32 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) | |
| 33 | 1 31 32 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
| 34 | 30 33 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → 0 < 𝐴 ) ) |
| 35 | 34 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) |
| 36 | 4 | biimpri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 37 | 35 36 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 38 | 37 | rpreccld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 39 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) | |
| 40 | lerec | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) | |
| 41 | 31 30 40 | mpanl12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) |
| 42 | 35 41 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) |
| 43 | 39 42 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) |
| 44 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 45 | 43 44 | breqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ≤ 1 ) |
| 46 | 01sqrex | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ+ ∧ ( 1 / 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) | |
| 47 | 38 45 46 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) |
| 48 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 49 | 48 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 𝑦 ∈ ℝ ) |
| 50 | rpgt0 | ⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) | |
| 51 | 50 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 0 < 𝑦 ) |
| 52 | gt0ne0 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 𝑦 ≠ 0 ) | |
| 53 | rereccl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℝ ) | |
| 54 | 52 53 | syldan | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 55 | 49 51 54 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 56 | recgt0 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 0 < ( 1 / 𝑦 ) ) | |
| 57 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝑦 ) ∈ ℝ ) → ( 0 < ( 1 / 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) ) | |
| 58 | 1 57 | mpan | ⊢ ( ( 1 / 𝑦 ) ∈ ℝ → ( 0 < ( 1 / 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) ) |
| 59 | 54 56 58 | sylc | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) |
| 60 | 49 51 59 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 0 ≤ ( 1 / 𝑦 ) ) |
| 61 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 62 | 61 | adantr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 𝑦 ∈ ℂ ) |
| 63 | 62 52 | sqrecd | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( ( 1 / 𝑦 ) ↑ 2 ) = ( 1 / ( 𝑦 ↑ 2 ) ) ) |
| 64 | 49 51 63 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( ( 1 / 𝑦 ) ↑ 2 ) = ( 1 / ( 𝑦 ↑ 2 ) ) ) |
| 65 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) | |
| 66 | 65 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / ( 𝑦 ↑ 2 ) ) = ( 1 / ( 1 / 𝐴 ) ) ) |
| 67 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 68 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 69 | 35 68 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ≠ 0 ) |
| 70 | recrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) | |
| 71 | 67 69 70 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 72 | 71 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 73 | 64 66 72 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) |
| 74 | breq2 | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 1 / 𝑦 ) ) ) | |
| 75 | oveq1 | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 𝑥 ↑ 2 ) = ( ( 1 / 𝑦 ) ↑ 2 ) ) | |
| 76 | 75 | eqeq1d | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) |
| 77 | 74 76 | anbi12d | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 0 ≤ ( 1 / 𝑦 ) ∧ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) ) |
| 78 | 77 | rspcev | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℝ ∧ ( 0 ≤ ( 1 / 𝑦 ) ∧ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 79 | 55 60 73 78 | syl12anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 80 | 79 | rexlimdv3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 81 | 47 80 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 82 | 81 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 ≤ 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
| 84 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 85 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) | |
| 86 | 84 31 85 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
| 87 | 29 83 86 | mpjaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |