This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrmo | ⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr1 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 ↑ 2 ) = 𝐴 ) | |
| 2 | simprr1 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑦 ↑ 2 ) = 𝐴 ) | |
| 3 | 1 2 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
| 4 | sqeqor | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) ) | |
| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) ) |
| 6 | 3 5 | mpbid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) |
| 7 | 6 | ord | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → 𝑥 = - 𝑦 ) ) |
| 8 | 3simpc | ⊢ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = - 𝑦 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ - 𝑦 ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ - 𝑦 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = - 𝑦 → ( i · 𝑥 ) = ( i · - 𝑦 ) ) | |
| 12 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · - 𝑦 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · - 𝑦 ) ∉ ℝ+ ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑥 = - 𝑦 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · - 𝑦 ) ∉ ℝ+ ) ) |
| 14 | 10 13 | anbi12d | ⊢ ( 𝑥 = - 𝑦 → ( ( 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 15 | 8 14 | syl5ibcom | ⊢ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 17 | 7 16 | syld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 18 | negeq | ⊢ ( 𝑦 = 0 → - 𝑦 = - 0 ) | |
| 19 | neg0 | ⊢ - 0 = 0 | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑦 = 0 → - 𝑦 = 0 ) |
| 21 | 20 | eqeq2d | ⊢ ( 𝑦 = 0 → ( 𝑥 = - 𝑦 ↔ 𝑥 = 0 ) ) |
| 22 | eqeq2 | ⊢ ( 𝑦 = 0 → ( 𝑥 = 𝑦 ↔ 𝑥 = 0 ) ) | |
| 23 | 21 22 | bitr4d | ⊢ ( 𝑦 = 0 → ( 𝑥 = - 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 24 | 23 | biimpcd | ⊢ ( 𝑥 = - 𝑦 → ( 𝑦 = 0 → 𝑥 = 𝑦 ) ) |
| 25 | 24 | necon3bd | ⊢ ( 𝑥 = - 𝑦 → ( ¬ 𝑥 = 𝑦 → 𝑦 ≠ 0 ) ) |
| 26 | 7 25 | syli | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → 𝑦 ≠ 0 ) ) |
| 27 | 3simpc | ⊢ ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) → ( 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) | |
| 28 | cnpart | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ↔ ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) | |
| 29 | 27 28 | imbitrid | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 30 | 29 | impancom | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → ( 𝑦 ≠ 0 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑦 ≠ 0 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 32 | 26 31 | syld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
| 33 | 17 32 | pm2.65d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ¬ ¬ 𝑥 = 𝑦 ) |
| 34 | 33 | notnotrd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → 𝑥 = 𝑦 ) |
| 35 | 34 | an4s | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → 𝑥 = 𝑦 ) |
| 36 | 35 | ex | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
| 37 | 36 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) ) |
| 38 | 37 | ralrimivv | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
| 39 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) | |
| 40 | 39 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( 𝑦 ↑ 2 ) = 𝐴 ) ) |
| 41 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝑦 ) ) | |
| 42 | 41 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) | |
| 44 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · 𝑦 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝑥 = 𝑦 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) |
| 46 | 40 42 45 | 3anbi123d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) |
| 47 | 46 | rmo4 | ⊢ ( ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
| 48 | 38 47 | sylibr | ⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |