This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrex | |- ( ( A e. RR /\ 0 <_ A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 5 | 01sqrex | |- ( ( A e. RR+ /\ A <_ 1 ) -> E. x e. RR+ ( x <_ 1 /\ ( x ^ 2 ) = A ) ) |
|
| 6 | rprege0 | |- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
|
| 7 | 6 | anim1i | |- ( ( x e. RR+ /\ ( x ^ 2 ) = A ) -> ( ( x e. RR /\ 0 <_ x ) /\ ( x ^ 2 ) = A ) ) |
| 8 | anass | |- ( ( ( x e. RR /\ 0 <_ x ) /\ ( x ^ 2 ) = A ) <-> ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
|
| 9 | 7 8 | sylib | |- ( ( x e. RR+ /\ ( x ^ 2 ) = A ) -> ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 10 | 9 | adantrl | |- ( ( x e. RR+ /\ ( x <_ 1 /\ ( x ^ 2 ) = A ) ) -> ( x e. RR /\ ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 11 | 10 | reximi2 | |- ( E. x e. RR+ ( x <_ 1 /\ ( x ^ 2 ) = A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 12 | 5 11 | syl | |- ( ( A e. RR+ /\ A <_ 1 ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 13 | 4 12 | sylanbr | |- ( ( ( A e. RR /\ 0 < A ) /\ A <_ 1 ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 14 | 13 | exp31 | |- ( A e. RR -> ( 0 < A -> ( A <_ 1 -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) ) |
| 15 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 16 | id | |- ( 0 = A -> 0 = A ) |
|
| 17 | 15 16 | eqtrid | |- ( 0 = A -> ( 0 ^ 2 ) = A ) |
| 18 | 0le0 | |- 0 <_ 0 |
|
| 19 | 17 18 | jctil | |- ( 0 = A -> ( 0 <_ 0 /\ ( 0 ^ 2 ) = A ) ) |
| 20 | breq2 | |- ( x = 0 -> ( 0 <_ x <-> 0 <_ 0 ) ) |
|
| 21 | oveq1 | |- ( x = 0 -> ( x ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 22 | 21 | eqeq1d | |- ( x = 0 -> ( ( x ^ 2 ) = A <-> ( 0 ^ 2 ) = A ) ) |
| 23 | 20 22 | anbi12d | |- ( x = 0 -> ( ( 0 <_ x /\ ( x ^ 2 ) = A ) <-> ( 0 <_ 0 /\ ( 0 ^ 2 ) = A ) ) ) |
| 24 | 23 | rspcev | |- ( ( 0 e. RR /\ ( 0 <_ 0 /\ ( 0 ^ 2 ) = A ) ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 25 | 1 19 24 | sylancr | |- ( 0 = A -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 26 | 25 | a1i13 | |- ( A e. RR -> ( 0 = A -> ( A <_ 1 -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) ) |
| 27 | 14 26 | jaod | |- ( A e. RR -> ( ( 0 < A \/ 0 = A ) -> ( A <_ 1 -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) ) |
| 28 | 3 27 | sylbid | |- ( A e. RR -> ( 0 <_ A -> ( A <_ 1 -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) ) |
| 29 | 28 | imp | |- ( ( A e. RR /\ 0 <_ A ) -> ( A <_ 1 -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 30 | 0lt1 | |- 0 < 1 |
|
| 31 | 1re | |- 1 e. RR |
|
| 32 | ltletr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
|
| 33 | 1 31 32 | mp3an12 | |- ( A e. RR -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
| 34 | 30 33 | mpani | |- ( A e. RR -> ( 1 <_ A -> 0 < A ) ) |
| 35 | 34 | imp | |- ( ( A e. RR /\ 1 <_ A ) -> 0 < A ) |
| 36 | 4 | biimpri | |- ( ( A e. RR /\ 0 < A ) -> A e. RR+ ) |
| 37 | 35 36 | syldan | |- ( ( A e. RR /\ 1 <_ A ) -> A e. RR+ ) |
| 38 | 37 | rpreccld | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 / A ) e. RR+ ) |
| 39 | simpr | |- ( ( A e. RR /\ 1 <_ A ) -> 1 <_ A ) |
|
| 40 | lerec | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ A <-> ( 1 / A ) <_ ( 1 / 1 ) ) ) |
|
| 41 | 31 30 40 | mpanl12 | |- ( ( A e. RR /\ 0 < A ) -> ( 1 <_ A <-> ( 1 / A ) <_ ( 1 / 1 ) ) ) |
| 42 | 35 41 | syldan | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 <_ A <-> ( 1 / A ) <_ ( 1 / 1 ) ) ) |
| 43 | 39 42 | mpbid | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 / A ) <_ ( 1 / 1 ) ) |
| 44 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 45 | 43 44 | breqtrdi | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 / A ) <_ 1 ) |
| 46 | 01sqrex | |- ( ( ( 1 / A ) e. RR+ /\ ( 1 / A ) <_ 1 ) -> E. y e. RR+ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) |
|
| 47 | 38 45 46 | syl2anc | |- ( ( A e. RR /\ 1 <_ A ) -> E. y e. RR+ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) |
| 48 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 49 | 48 | 3ad2ant2 | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> y e. RR ) |
| 50 | rpgt0 | |- ( y e. RR+ -> 0 < y ) |
|
| 51 | 50 | 3ad2ant2 | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> 0 < y ) |
| 52 | gt0ne0 | |- ( ( y e. RR /\ 0 < y ) -> y =/= 0 ) |
|
| 53 | rereccl | |- ( ( y e. RR /\ y =/= 0 ) -> ( 1 / y ) e. RR ) |
|
| 54 | 52 53 | syldan | |- ( ( y e. RR /\ 0 < y ) -> ( 1 / y ) e. RR ) |
| 55 | 49 51 54 | syl2anc | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( 1 / y ) e. RR ) |
| 56 | recgt0 | |- ( ( y e. RR /\ 0 < y ) -> 0 < ( 1 / y ) ) |
|
| 57 | ltle | |- ( ( 0 e. RR /\ ( 1 / y ) e. RR ) -> ( 0 < ( 1 / y ) -> 0 <_ ( 1 / y ) ) ) |
|
| 58 | 1 57 | mpan | |- ( ( 1 / y ) e. RR -> ( 0 < ( 1 / y ) -> 0 <_ ( 1 / y ) ) ) |
| 59 | 54 56 58 | sylc | |- ( ( y e. RR /\ 0 < y ) -> 0 <_ ( 1 / y ) ) |
| 60 | 49 51 59 | syl2anc | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> 0 <_ ( 1 / y ) ) |
| 61 | recn | |- ( y e. RR -> y e. CC ) |
|
| 62 | 61 | adantr | |- ( ( y e. RR /\ 0 < y ) -> y e. CC ) |
| 63 | 62 52 | sqrecd | |- ( ( y e. RR /\ 0 < y ) -> ( ( 1 / y ) ^ 2 ) = ( 1 / ( y ^ 2 ) ) ) |
| 64 | 49 51 63 | syl2anc | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( ( 1 / y ) ^ 2 ) = ( 1 / ( y ^ 2 ) ) ) |
| 65 | simp3r | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( y ^ 2 ) = ( 1 / A ) ) |
|
| 66 | 65 | oveq2d | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( 1 / ( y ^ 2 ) ) = ( 1 / ( 1 / A ) ) ) |
| 67 | recn | |- ( A e. RR -> A e. CC ) |
|
| 68 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 69 | 35 68 | syldan | |- ( ( A e. RR /\ 1 <_ A ) -> A =/= 0 ) |
| 70 | recrec | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
|
| 71 | 67 69 70 | syl2an2r | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 / ( 1 / A ) ) = A ) |
| 72 | 71 | 3ad2ant1 | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( 1 / ( 1 / A ) ) = A ) |
| 73 | 64 66 72 | 3eqtrd | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> ( ( 1 / y ) ^ 2 ) = A ) |
| 74 | breq2 | |- ( x = ( 1 / y ) -> ( 0 <_ x <-> 0 <_ ( 1 / y ) ) ) |
|
| 75 | oveq1 | |- ( x = ( 1 / y ) -> ( x ^ 2 ) = ( ( 1 / y ) ^ 2 ) ) |
|
| 76 | 75 | eqeq1d | |- ( x = ( 1 / y ) -> ( ( x ^ 2 ) = A <-> ( ( 1 / y ) ^ 2 ) = A ) ) |
| 77 | 74 76 | anbi12d | |- ( x = ( 1 / y ) -> ( ( 0 <_ x /\ ( x ^ 2 ) = A ) <-> ( 0 <_ ( 1 / y ) /\ ( ( 1 / y ) ^ 2 ) = A ) ) ) |
| 78 | 77 | rspcev | |- ( ( ( 1 / y ) e. RR /\ ( 0 <_ ( 1 / y ) /\ ( ( 1 / y ) ^ 2 ) = A ) ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 79 | 55 60 73 78 | syl12anc | |- ( ( ( A e. RR /\ 1 <_ A ) /\ y e. RR+ /\ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 80 | 79 | rexlimdv3a | |- ( ( A e. RR /\ 1 <_ A ) -> ( E. y e. RR+ ( y <_ 1 /\ ( y ^ 2 ) = ( 1 / A ) ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 81 | 47 80 | mpd | |- ( ( A e. RR /\ 1 <_ A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |
| 82 | 81 | ex | |- ( A e. RR -> ( 1 <_ A -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 83 | 82 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( 1 <_ A -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) ) |
| 84 | simpl | |- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
|
| 85 | letric | |- ( ( A e. RR /\ 1 e. RR ) -> ( A <_ 1 \/ 1 <_ A ) ) |
|
| 86 | 84 31 85 | sylancl | |- ( ( A e. RR /\ 0 <_ A ) -> ( A <_ 1 \/ 1 <_ A ) ) |
| 87 | 29 83 86 | mpjaod | |- ( ( A e. RR /\ 0 <_ A ) -> E. x e. RR ( 0 <_ x /\ ( x ^ 2 ) = A ) ) |