This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rrecex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) | |
| 2 | eqcom | ⊢ ( 𝑥 = ( 1 / 𝐴 ) ↔ ( 1 / 𝐴 ) = 𝑥 ) | |
| 3 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 6 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ≠ 0 ) | |
| 9 | divmul | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = 𝑥 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) | |
| 10 | 3 5 7 8 9 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( 1 / 𝐴 ) = 𝑥 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) |
| 11 | 2 10 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 = ( 1 / 𝐴 ) ↔ ( 𝐴 · 𝑥 ) = 1 ) ) |
| 12 | 11 | rexbidva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑥 ∈ ℝ 𝑥 = ( 1 / 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) ) |
| 13 | 1 12 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ 𝑥 = ( 1 / 𝐴 ) ) |
| 14 | risset | ⊢ ( ( 1 / 𝐴 ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ 𝑥 = ( 1 / 𝐴 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |