This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square of reciprocal is reciprocal of square. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | sqrecd | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | 2z | ⊢ 2 ∈ ℤ | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 5 | exprec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 2 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) |