This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a square root for reals in the interval ( 0 , 1 ] . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 01sqrex | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } = { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } | |
| 2 | eqid | ⊢ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) | |
| 3 | 1 2 | 01sqrexlem4 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ) |
| 4 | eqid | ⊢ { 𝑧 ∣ ∃ 𝑤 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } ∃ 𝑥 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } 𝑧 = ( 𝑤 · 𝑥 ) } = { 𝑧 ∣ ∃ 𝑤 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } ∃ 𝑥 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } 𝑧 = ( 𝑤 · 𝑥 ) } | |
| 5 | 1 2 4 | 01sqrexlem7 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) |
| 6 | breq1 | ⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( 𝑥 ≤ 1 ↔ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( 𝑥 ↑ 2 ) = ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) ) |
| 10 | 9 | rspcev | ⊢ ( ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 11 | 10 | anassrs | ⊢ ( ( ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
| 12 | 3 5 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |