This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 3 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 4 | 2 3 | recne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ≠ 0 ) |
| 5 | 4 | necomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≠ ( 1 / 𝐴 ) ) |
| 6 | 5 | neneqd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ 0 = ( 1 / 𝐴 ) ) |
| 7 | 0lt1 | ⊢ 0 < 1 | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 8 9 | ltnsymi | ⊢ ( 0 < 1 → ¬ 1 < 0 ) |
| 11 | 7 10 | ax-mp | ⊢ ¬ 1 < 0 |
| 12 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℝ ) | |
| 13 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ≠ 0 ) |
| 14 | 12 13 | rereccld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 15 | 14 | renegcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( 1 / 𝐴 ) ∈ ℝ ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) < 0 ) | |
| 17 | 1 3 | rereccld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 19 | 18 | lt0neg1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) ) |
| 20 | 16 19 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - ( 1 / 𝐴 ) ) |
| 21 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < 𝐴 ) | |
| 22 | 15 12 20 21 | mulgt0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
| 23 | 2 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℂ ) |
| 24 | 23 13 | reccld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 25 | 24 23 | mulneg1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - ( ( 1 / 𝐴 ) · 𝐴 ) ) |
| 26 | 23 13 | recid2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 27 | 26 | negeqd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( ( 1 / 𝐴 ) · 𝐴 ) = - 1 ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - 1 ) |
| 29 | 22 28 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - 1 ) |
| 30 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 ∈ ℝ ) | |
| 31 | 30 | lt0neg1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 < 0 ↔ 0 < - 1 ) ) |
| 32 | 29 31 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 < 0 ) |
| 33 | 32 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) < 0 → 1 < 0 ) ) |
| 34 | 11 33 | mtoi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 1 / 𝐴 ) < 0 ) |
| 35 | ioran | ⊢ ( ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ↔ ( ¬ 0 = ( 1 / 𝐴 ) ∧ ¬ ( 1 / 𝐴 ) < 0 ) ) | |
| 36 | 6 34 35 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) |
| 37 | axlttri | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) | |
| 38 | 8 17 37 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) |
| 39 | 36 38 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |