This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of Apostol p. 18. (Contributed by NM, 26-Sep-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recid2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) | |
| 2 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 4 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 5 | recne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ≠ 0 ) | |
| 6 | divmul | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ) ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) | |
| 7 | 2 3 4 5 6 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) |
| 8 | 1 7 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |