This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real has no largest member. Definition 9-3.1(iii) of Gleason p. 121. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 <Q 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ) ) |
| 3 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 <Q 𝑥 ↔ 𝐵 <Q 𝑥 ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝐵 <Q 𝑥 ) ) |
| 5 | 2 4 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 <Q 𝑥 ) ) ) |
| 6 | elnpi | ⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ( 𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ) ) ) | |
| 7 | 6 | simprbi | ⊢ ( 𝐴 ∈ P → ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ( 𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ) ) |
| 8 | 7 | r19.21bi | ⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑥 ( 𝑥 <Q 𝑦 → 𝑥 ∈ 𝐴 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ) ) |
| 9 | 8 | simprd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝑦 <Q 𝑥 ) |
| 10 | 5 9 | vtoclg | ⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 <Q 𝑥 ) ) |
| 11 | 10 | anabsi7 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 <Q 𝑥 ) |