This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define multiplication on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 18-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mp | ⊢ ·P = ( 𝑥 ∈ P , 𝑦 ∈ P ↦ { 𝑤 ∣ ∃ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmp | ⊢ ·P | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cnp | ⊢ P | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | vw | ⊢ 𝑤 | |
| 5 | vv | ⊢ 𝑣 | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | vu | ⊢ 𝑢 | |
| 8 | 3 | cv | ⊢ 𝑦 |
| 9 | 4 | cv | ⊢ 𝑤 |
| 10 | 5 | cv | ⊢ 𝑣 |
| 11 | cmq | ⊢ ·Q | |
| 12 | 7 | cv | ⊢ 𝑢 |
| 13 | 10 12 11 | co | ⊢ ( 𝑣 ·Q 𝑢 ) |
| 14 | 9 13 | wceq | ⊢ 𝑤 = ( 𝑣 ·Q 𝑢 ) |
| 15 | 14 7 8 | wrex | ⊢ ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) |
| 16 | 15 5 6 | wrex | ⊢ ∃ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) |
| 17 | 16 4 | cab | ⊢ { 𝑤 ∣ ∃ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) } |
| 18 | 1 3 2 2 17 | cmpo | ⊢ ( 𝑥 ∈ P , 𝑦 ∈ P ↦ { 𝑤 ∣ ∃ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) } ) |
| 19 | 0 18 | wceq | ⊢ ·P = ( 𝑥 ∈ P , 𝑦 ∈ P ↦ { 𝑤 ∣ ∃ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑦 𝑤 = ( 𝑣 ·Q 𝑢 ) } ) |