This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | |- B = { x | E. y ( x |
|
| Assertion | reclem3pr | |- ( A e. P. -> 1P C_ ( A .P. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | |- B = { x | E. y ( x |
|
| 2 | df-1p | |- 1P = { w | w |
|
| 3 | 2 | eqabri | |- ( w e. 1P <-> w |
| 4 | ltrnq | |- ( w( *Q ` 1Q ) |
|
| 5 | mulcomnq | |- ( ( *Q ` 1Q ) .Q 1Q ) = ( 1Q .Q ( *Q ` 1Q ) ) |
|
| 6 | 1nq | |- 1Q e. Q. |
|
| 7 | recclnq | |- ( 1Q e. Q. -> ( *Q ` 1Q ) e. Q. ) |
|
| 8 | mulidnq | |- ( ( *Q ` 1Q ) e. Q. -> ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) |
| 10 | recidnq | |- ( 1Q e. Q. -> ( 1Q .Q ( *Q ` 1Q ) ) = 1Q ) |
|
| 11 | 6 10 | ax-mp | |- ( 1Q .Q ( *Q ` 1Q ) ) = 1Q |
| 12 | 5 9 11 | 3eqtr3i | |- ( *Q ` 1Q ) = 1Q |
| 13 | 12 | breq1i | |- ( ( *Q ` 1Q )1Q |
| 14 | 4 13 | bitri | |- ( w1Q |
| 15 | prlem936 | |- ( ( A e. P. /\ 1QE. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) |
|
| 16 | 14 15 | sylan2b | |- ( ( A e. P. /\ wE. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) |
| 17 | prnmax | |- ( ( A e. P. /\ v e. A ) -> E. z e. A v |
|
| 18 | 17 | ad2ant2r | |- ( ( ( A e. P. /\ wE. z e. A v |
| 19 | elprnq | |- ( ( A e. P. /\ v e. A ) -> v e. Q. ) |
|
| 20 | 19 | ad2ant2r | |- ( ( ( A e. P. /\ wv e. Q. ) |
| 21 | 20 | 3adant3 | |- ( ( ( A e. P. /\ wv e. Q. ) |
| 22 | simp1r | |- ( ( ( A e. P. /\ ww |
|
| 23 | ltrelnq | |- |
|
| 24 | 23 | brel | |- ( w( w e. Q. /\ 1Q e. Q. ) ) |
| 25 | 24 | simpld | |- ( ww e. Q. ) |
| 26 | 22 25 | syl | |- ( ( ( A e. P. /\ ww e. Q. ) |
| 27 | simp3 | |- ( ( ( A e. P. /\ wv |
|
| 28 | simp2r | |- ( ( ( A e. P. /\ w-. ( v .Q ( *Q ` w ) ) e. A ) |
|
| 29 | ltrnq | |- ( v( *Q ` z ) |
|
| 30 | fvex | |- ( *Q ` z ) e. _V |
|
| 31 | fvex | |- ( *Q ` v ) e. _V |
|
| 32 | ltmnq | |- ( u e. Q. -> ( x( u .Q x ) |
|
| 33 | vex | |- w e. _V |
|
| 34 | mulcomnq | |- ( x .Q y ) = ( y .Q x ) |
|
| 35 | 30 31 32 33 34 | caovord2 | |- ( w e. Q. -> ( ( *Q ` z )( ( *Q ` z ) .Q w ) |
| 36 | 29 35 | bitrid | |- ( w e. Q. -> ( v( ( *Q ` z ) .Q w ) |
| 37 | 36 | adantl | |- ( ( v e. Q. /\ w e. Q. ) -> ( v( ( *Q ` z ) .Q w ) |
| 38 | 37 | biimpd | |- ( ( v e. Q. /\ w e. Q. ) -> ( v( ( *Q ` z ) .Q w ) |
| 39 | mulcomnq | |- ( v .Q ( *Q ` v ) ) = ( ( *Q ` v ) .Q v ) |
|
| 40 | recidnq | |- ( v e. Q. -> ( v .Q ( *Q ` v ) ) = 1Q ) |
|
| 41 | 39 40 | eqtr3id | |- ( v e. Q. -> ( ( *Q ` v ) .Q v ) = 1Q ) |
| 42 | recidnq | |- ( w e. Q. -> ( w .Q ( *Q ` w ) ) = 1Q ) |
|
| 43 | 41 42 | oveqan12d | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( 1Q .Q 1Q ) ) |
| 44 | vex | |- v e. _V |
|
| 45 | mulassnq | |- ( ( x .Q y ) .Q u ) = ( x .Q ( y .Q u ) ) |
|
| 46 | fvex | |- ( *Q ` w ) e. _V |
|
| 47 | 31 44 33 34 45 46 | caov4 | |- ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) |
| 48 | mulidnq | |- ( 1Q e. Q. -> ( 1Q .Q 1Q ) = 1Q ) |
|
| 49 | 6 48 | ax-mp | |- ( 1Q .Q 1Q ) = 1Q |
| 50 | 43 47 49 | 3eqtr3g | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) |
| 51 | recclnq | |- ( v e. Q. -> ( *Q ` v ) e. Q. ) |
|
| 52 | mulclnq | |- ( ( ( *Q ` v ) e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) |
|
| 53 | 51 52 | sylan | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) |
| 54 | recmulnq | |- ( ( ( *Q ` v ) .Q w ) e. Q. -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) |
|
| 55 | 53 54 | syl | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) |
| 56 | 50 55 | mpbird | |- ( ( v e. Q. /\ w e. Q. ) -> ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) ) |
| 57 | 56 | eleq1d | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> ( v .Q ( *Q ` w ) ) e. A ) ) |
| 58 | 57 | notbid | |- ( ( v e. Q. /\ w e. Q. ) -> ( -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> -. ( v .Q ( *Q ` w ) ) e. A ) ) |
| 59 | 58 | biimprd | |- ( ( v e. Q. /\ w e. Q. ) -> ( -. ( v .Q ( *Q ` w ) ) e. A -> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
| 60 | 38 59 | anim12d | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( v( ( ( *Q ` z ) .Q w ) |
| 61 | ovex | |- ( ( *Q ` v ) .Q w ) e. _V |
|
| 62 | breq2 | |- ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( *Q ` z ) .Q w )( ( *Q ` z ) .Q w ) |
|
| 63 | fveq2 | |- ( y = ( ( *Q ` v ) .Q w ) -> ( *Q ` y ) = ( *Q ` ( ( *Q ` v ) .Q w ) ) ) |
|
| 64 | 63 | eleq1d | |- ( y = ( ( *Q ` v ) .Q w ) -> ( ( *Q ` y ) e. A <-> ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
| 65 | 64 | notbid | |- ( y = ( ( *Q ` v ) .Q w ) -> ( -. ( *Q ` y ) e. A <-> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
| 66 | 62 65 | anbi12d | |- ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( ( *Q ` z ) .Q w )( ( ( *Q ` z ) .Q w ) |
| 67 | 61 66 | spcev | |- ( ( ( ( *Q ` z ) .Q w )E. y ( ( ( *Q ` z ) .Q w ) |
| 68 | ovex | |- ( ( *Q ` z ) .Q w ) e. _V |
|
| 69 | breq1 | |- ( x = ( ( *Q ` z ) .Q w ) -> ( x( ( *Q ` z ) .Q w ) |
|
| 70 | 69 | anbi1d | |- ( x = ( ( *Q ` z ) .Q w ) -> ( ( x( ( ( *Q ` z ) .Q w ) |
| 71 | 70 | exbidv | |- ( x = ( ( *Q ` z ) .Q w ) -> ( E. y ( xE. y ( ( ( *Q ` z ) .Q w ) |
| 72 | 68 71 1 | elab2 | |- ( ( ( *Q ` z ) .Q w ) e. B <-> E. y ( ( ( *Q ` z ) .Q w ) |
| 73 | 67 72 | sylibr | |- ( ( ( ( *Q ` z ) .Q w )( ( *Q ` z ) .Q w ) e. B ) |
| 74 | 60 73 | syl6 | |- ( ( v e. Q. /\ w e. Q. ) -> ( ( v( ( *Q ` z ) .Q w ) e. B ) ) |
| 75 | 74 | imp | |- ( ( ( v e. Q. /\ w e. Q. ) /\ ( v( ( *Q ` z ) .Q w ) e. B ) |
| 76 | 21 26 27 28 75 | syl22anc | |- ( ( ( A e. P. /\ w( ( *Q ` z ) .Q w ) e. B ) |
| 77 | 23 | brel | |- ( v( v e. Q. /\ z e. Q. ) ) |
| 78 | 77 | simprd | |- ( vz e. Q. ) |
| 79 | 78 | 3ad2ant3 | |- ( ( ( A e. P. /\ wz e. Q. ) |
| 80 | mulidnq | |- ( w e. Q. -> ( w .Q 1Q ) = w ) |
|
| 81 | mulcomnq | |- ( w .Q 1Q ) = ( 1Q .Q w ) |
|
| 82 | 80 81 | eqtr3di | |- ( w e. Q. -> w = ( 1Q .Q w ) ) |
| 83 | recidnq | |- ( z e. Q. -> ( z .Q ( *Q ` z ) ) = 1Q ) |
|
| 84 | 83 | oveq1d | |- ( z e. Q. -> ( ( z .Q ( *Q ` z ) ) .Q w ) = ( 1Q .Q w ) ) |
| 85 | mulassnq | |- ( ( z .Q ( *Q ` z ) ) .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) |
|
| 86 | 84 85 | eqtr3di | |- ( z e. Q. -> ( 1Q .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
| 87 | 82 86 | sylan9eqr | |- ( ( z e. Q. /\ w e. Q. ) -> w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
| 88 | 79 26 87 | syl2anc | |- ( ( ( A e. P. /\ ww = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
| 89 | oveq2 | |- ( x = ( ( *Q ` z ) .Q w ) -> ( z .Q x ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
|
| 90 | 89 | rspceeqv | |- ( ( ( ( *Q ` z ) .Q w ) e. B /\ w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) -> E. x e. B w = ( z .Q x ) ) |
| 91 | 76 88 90 | syl2anc | |- ( ( ( A e. P. /\ wE. x e. B w = ( z .Q x ) ) |
| 92 | 91 | 3expia | |- ( ( ( A e. P. /\ w( vE. x e. B w = ( z .Q x ) ) ) |
| 93 | 92 | reximdv | |- ( ( ( A e. P. /\ w( E. z e. A vE. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 94 | 1 | reclem2pr | |- ( A e. P. -> B e. P. ) |
| 95 | df-mp | |- .P. = ( y e. P. , w e. P. |-> { u | E. f e. y E. g e. w u = ( f .Q g ) } ) |
|
| 96 | mulclnq | |- ( ( f e. Q. /\ g e. Q. ) -> ( f .Q g ) e. Q. ) |
|
| 97 | 95 96 | genpelv | |- ( ( A e. P. /\ B e. P. ) -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 98 | 94 97 | mpdan | |- ( A e. P. -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 99 | 98 | ad2antrr | |- ( ( ( A e. P. /\ w( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 100 | 93 99 | sylibrd | |- ( ( ( A e. P. /\ w( E. z e. A vw e. ( A .P. B ) ) ) |
| 101 | 18 100 | mpd | |- ( ( ( A e. P. /\ ww e. ( A .P. B ) ) |
| 102 | 16 101 | rexlimddv | |- ( ( A e. P. /\ ww e. ( A .P. B ) ) |
| 103 | 102 | ex | |- ( A e. P. -> ( ww e. ( A .P. B ) ) ) |
| 104 | 3 103 | biimtrid | |- ( A e. P. -> ( w e. 1P -> w e. ( A .P. B ) ) ) |
| 105 | 104 | ssrdv | |- ( A e. P. -> 1P C_ ( A .P. B ) ) |