This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | 1 2 | genpv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) ) |
| 5 | id | ⊢ ( 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 = ( 𝑔 𝐺 ℎ ) ) | |
| 6 | ovex | ⊢ ( 𝑔 𝐺 ℎ ) ∈ V | |
| 7 | 5 6 | eqeltrdi | ⊢ ( 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
| 9 | 8 | rexlimivw | ⊢ ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) → 𝐶 ∈ V ) |
| 10 | eqeq1 | ⊢ ( 𝑓 = 𝐶 → ( 𝑓 = ( 𝑔 𝐺 ℎ ) ↔ 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) | |
| 11 | 10 | 2rexbidv | ⊢ ( 𝑓 = 𝐶 → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |
| 12 | 9 11 | elab3 | ⊢ ( 𝐶 ∈ { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) |
| 13 | 4 12 | bitrdi | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝐶 = ( 𝑔 𝐺 ℎ ) ) ) |