This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| Assertion | reclem4pr | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 𝐵 ) = 1P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| 2 | 1 | reclem2pr | ⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |
| 3 | df-mp | ⊢ ·P = ( 𝑦 ∈ P , 𝑤 ∈ P ↦ { 𝑢 ∣ ∃ 𝑓 ∈ 𝑦 ∃ 𝑔 ∈ 𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } ) | |
| 4 | mulclnq | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑔 ∈ Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q ) | |
| 5 | 3 4 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 6 | 2 5 | mpdan | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 7 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 8 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 9 | 8 | brel | ⊢ ( 𝑥 <Q 𝑦 → ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 10 | 9 | simprd | ⊢ ( 𝑥 <Q 𝑦 → 𝑦 ∈ Q ) |
| 11 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ Q ) | |
| 12 | ltmnq | ⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
| 14 | 13 | biimpd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
| 16 | recclnq | ⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) | |
| 17 | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → 𝑧 <Q ( *Q ‘ 𝑦 ) ) ) | |
| 18 | 16 17 | sylan2 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → 𝑧 <Q ( *Q ‘ 𝑦 ) ) ) |
| 19 | ltmnq | ⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) ) | |
| 20 | mulcomnq | ⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) | |
| 21 | 20 | a1i | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) ) |
| 22 | recidnq | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) | |
| 23 | 21 22 | breq12d | ⊢ ( 𝑦 ∈ Q → ( ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
| 24 | 19 23 | bitrd | ⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
| 26 | 18 25 | sylibd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
| 27 | 15 26 | anim12d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) ) |
| 28 | ltsonq | ⊢ <Q Or Q | |
| 29 | 28 8 | sotri | ⊢ ( ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) |
| 30 | 27 29 | syl6 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
| 31 | 30 | exp4b | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∈ Q → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) ) |
| 32 | 10 31 | syl5 | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) ) |
| 33 | 32 | pm2.43d | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) |
| 34 | 33 | impd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
| 35 | 34 | exlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
| 36 | 7 35 | biimtrid | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
| 37 | breq1 | ⊢ ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → ( 𝑤 <Q 1Q ↔ ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) | |
| 38 | 37 | biimprcd | ⊢ ( ( 𝑧 ·Q 𝑥 ) <Q 1Q → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) |
| 39 | 36 38 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) ) |
| 40 | 39 | expimpd | ⊢ ( 𝐴 ∈ P → ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) ) |
| 41 | 40 | rexlimdvv | ⊢ ( 𝐴 ∈ P → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) |
| 42 | 6 41 | sylbid | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 <Q 1Q ) ) |
| 43 | df-1p | ⊢ 1P = { 𝑤 ∣ 𝑤 <Q 1Q } | |
| 44 | 43 | eqabri | ⊢ ( 𝑤 ∈ 1P ↔ 𝑤 <Q 1Q ) |
| 45 | 42 44 | imbitrrdi | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 ∈ 1P ) ) |
| 46 | 45 | ssrdv | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 𝐵 ) ⊆ 1P ) |
| 47 | 1 | reclem3pr | ⊢ ( 𝐴 ∈ P → 1P ⊆ ( 𝐴 ·P 𝐵 ) ) |
| 48 | 46 47 | eqssd | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 𝐵 ) = 1P ) |