This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9-3.6 of Gleason p. 124. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prlem936 | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 2 | 1 | brel | ⊢ ( 1Q <Q 𝐵 → ( 1Q ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 3 | 2 | simprd | ⊢ ( 1Q <Q 𝐵 → 𝐵 ∈ Q ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → 𝐵 ∈ Q ) |
| 5 | breq2 | ⊢ ( 𝑏 = 𝐵 → ( 1Q <Q 𝑏 ↔ 1Q <Q 𝐵 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ↔ ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑥 ·Q 𝑏 ) = ( 𝑥 ·Q 𝐵 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑏 = 𝐵 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
| 11 | 6 10 | imbi12d | ⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ↔ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) ) |
| 12 | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) | |
| 13 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝐴 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 16 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Q ) | |
| 17 | 16 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦 ∈ Q ) |
| 18 | mulidnq | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 1Q ) = 𝑦 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) = 𝑦 ) |
| 20 | simplr | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 1Q <Q 𝑏 ) | |
| 21 | ltmnq | ⊢ ( 𝑦 ∈ Q → ( 1Q <Q 𝑏 ↔ ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) ) | |
| 22 | 21 | biimpa | ⊢ ( ( 𝑦 ∈ Q ∧ 1Q <Q 𝑏 ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) |
| 23 | 17 20 22 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) |
| 24 | 19 23 | eqbrtrrd | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ) |
| 25 | 1 | brel | ⊢ ( 1Q <Q 𝑏 → ( 1Q ∈ Q ∧ 𝑏 ∈ Q ) ) |
| 26 | 25 | simprd | ⊢ ( 1Q <Q 𝑏 → 𝑏 ∈ Q ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑏 ∈ Q ) |
| 28 | mulclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑏 ∈ Q ) → ( 𝑦 ·Q 𝑏 ) ∈ Q ) | |
| 29 | 17 27 28 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ Q ) |
| 30 | ltexnq | ⊢ ( ( 𝑦 ·Q 𝑏 ) ∈ Q → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) |
| 32 | 24 31 | mpbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) |
| 33 | simplll | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝐴 ∈ P ) | |
| 34 | vex | ⊢ 𝑧 ∈ V | |
| 35 | 34 | prlem934 | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) |
| 36 | 33 35 | syl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) |
| 37 | 33 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ P ) |
| 38 | simprr | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) | |
| 39 | eleq1 | ⊢ ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) | |
| 40 | 39 | biimparc | ⊢ ( ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
| 41 | 38 40 | sylan | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
| 43 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) | |
| 44 | 33 43 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 45 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) | |
| 46 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 47 | 46 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 48 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 49 | 47 48 | ndmovrcl | ⊢ ( ( 𝑦 +Q 𝑧 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) ) |
| 50 | 49 | simprd | ⊢ ( ( 𝑦 +Q 𝑧 ) ∈ Q → 𝑧 ∈ Q ) |
| 51 | 45 50 | syl | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → 𝑧 ∈ Q ) |
| 52 | 33 41 51 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝑧 ∈ Q ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ Q ) |
| 54 | addclnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 +Q 𝑧 ) ∈ Q ) | |
| 55 | 44 53 54 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 +Q 𝑧 ) ∈ Q ) |
| 56 | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) ∧ ( 𝑥 +Q 𝑧 ) ∈ Q ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) | |
| 57 | 37 42 55 56 | syl21anc | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
| 58 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑏 ∈ Q ) |
| 59 | mulclnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑏 ∈ Q ) → ( 𝑥 ·Q 𝑏 ) ∈ Q ) | |
| 60 | 44 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ·Q 𝑏 ) ∈ Q ) |
| 61 | 17 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ Q ) |
| 62 | simplr | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) | |
| 63 | recclnq | ⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) | |
| 64 | mulclnq | ⊢ ( ( 𝑧 ∈ Q ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) | |
| 65 | 63 64 | sylan2 | ⊢ ( ( 𝑧 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
| 66 | 65 | ancoms | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
| 67 | ltmnq | ⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 69 | mulassnq | ⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) | |
| 70 | mulcomnq | ⊢ ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) = ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) | |
| 71 | 70 | oveq2i | ⊢ ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 72 | 69 71 | eqtri | ⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 73 | recidnq | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) | |
| 74 | 73 | oveq2d | ⊢ ( 𝑦 ∈ Q → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑧 ·Q 1Q ) ) |
| 75 | mulidnq | ⊢ ( 𝑧 ∈ Q → ( 𝑧 ·Q 1Q ) = 𝑧 ) | |
| 76 | 74 75 | sylan9eq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑧 ) |
| 77 | 72 76 | eqtrid | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = 𝑧 ) |
| 78 | 77 | breq1d | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 79 | 68 78 | bitrd | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 80 | 79 | adantll | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 81 | mulnqf | ⊢ ·Q : ( Q × Q ) ⟶ Q | |
| 82 | 81 | fdmi | ⊢ dom ·Q = ( Q × Q ) |
| 83 | 82 48 | ndmovrcl | ⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝑏 ∈ Q ) ) |
| 84 | 83 | simpld | ⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → 𝑥 ∈ Q ) |
| 85 | ltanq | ⊢ ( 𝑥 ∈ Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
| 88 | vex | ⊢ 𝑦 ∈ V | |
| 89 | ovex | ⊢ ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ∈ V | |
| 90 | mulcomnq | ⊢ ( 𝑢 ·Q 𝑤 ) = ( 𝑤 ·Q 𝑢 ) | |
| 91 | distrnq | ⊢ ( 𝑢 ·Q ( 𝑤 +Q 𝑣 ) ) = ( ( 𝑢 ·Q 𝑤 ) +Q ( 𝑢 ·Q 𝑣 ) ) | |
| 92 | 88 34 89 90 91 | caovdir | ⊢ ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) |
| 93 | vex | ⊢ 𝑥 ∈ V | |
| 94 | fvex | ⊢ ( *Q ‘ 𝑦 ) ∈ V | |
| 95 | mulassnq | ⊢ ( ( 𝑢 ·Q 𝑤 ) ·Q 𝑣 ) = ( 𝑢 ·Q ( 𝑤 ·Q 𝑣 ) ) | |
| 96 | 88 93 94 90 95 | caov12 | ⊢ ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 97 | 73 | oveq2d | ⊢ ( 𝑦 ∈ Q → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
| 98 | mulidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) | |
| 99 | 84 98 | syl | ⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
| 100 | 97 99 | sylan9eqr | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑥 ) |
| 101 | 96 100 | eqtrid | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑥 ) |
| 102 | mulcomnq | ⊢ ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) = ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) | |
| 103 | 102 | oveq2i | ⊢ ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) ) |
| 104 | mulassnq | ⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) ) | |
| 105 | 103 104 | eqtr4i | ⊢ ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) |
| 106 | 105 | a1i | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) |
| 107 | 101 106 | oveq12d | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 108 | 92 107 | eqtrid | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
| 109 | 108 | breq2d | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
| 110 | 87 109 | bitr4d | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
| 111 | 110 | adantr | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
| 112 | 80 111 | bitrd | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
| 113 | 112 | adantrr | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
| 114 | ltanq | ⊢ ( 𝑧 ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ) ) | |
| 115 | addcomnq | ⊢ ( 𝑧 +Q 𝑦 ) = ( 𝑦 +Q 𝑧 ) | |
| 116 | addcomnq | ⊢ ( 𝑧 +Q 𝑥 ) = ( 𝑥 +Q 𝑧 ) | |
| 117 | 115 116 | breq12i | ⊢ ( ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) |
| 118 | 114 117 | bitrdi | ⊢ ( 𝑧 ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
| 119 | 118 | ad2antrl | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
| 120 | oveq1 | ⊢ ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) | |
| 121 | vex | ⊢ 𝑏 ∈ V | |
| 122 | 88 121 93 90 95 94 | caov411 | ⊢ ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 123 | 73 | oveq2d | ⊢ ( 𝑦 ∈ Q → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) ) |
| 124 | mulidnq | ⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) = ( 𝑥 ·Q 𝑏 ) ) | |
| 125 | 123 124 | sylan9eqr | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
| 126 | 122 125 | eqtrid | ⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
| 127 | 120 126 | sylan9eqr | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
| 128 | 127 | breq2d | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
| 129 | 128 | adantrl | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
| 130 | 113 119 129 | 3bitr3d | ⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
| 131 | 60 61 53 62 130 | syl22anc | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
| 132 | 57 131 | sylibd | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
| 133 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) ) | |
| 134 | 133 | impancom | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) ) |
| 135 | 134 | con3d | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 136 | 135 | ex | ⊢ ( 𝐴 ∈ P → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
| 137 | 136 | com23 | ⊢ ( 𝐴 ∈ P → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
| 138 | 37 137 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
| 139 | 132 138 | mpdd | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 140 | 139 | reximdva | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 141 | 36 140 | mpd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
| 142 | 32 141 | exlimddv | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
| 143 | 142 | expr | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 144 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·Q 𝑏 ) = ( 𝑦 ·Q 𝑏 ) ) | |
| 145 | 144 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 146 | 145 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 147 | 146 | rspcev | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
| 148 | 147 | ex | ⊢ ( 𝑦 ∈ 𝐴 → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 149 | 148 | adantl | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
| 150 | 143 149 | pm2.61d | ⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
| 151 | 15 150 | exlimddv | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
| 152 | 11 151 | vtoclg | ⊢ ( 𝐵 ∈ Q → ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
| 153 | 4 152 | mpcom | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) |