This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐴 + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − ( 𝐵 − 𝐶 ) ) = ( ( 𝐵 + 𝐴 ) − ( 𝐵 − 𝐶 ) ) ) |
| 4 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 6 | subsub2 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) ) | |
| 7 | 5 6 | syld3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) ) |
| 8 | pnncan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + 𝐶 ) ) | |
| 9 | 8 | 3com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + 𝐶 ) ) |
| 10 | 3 7 9 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐴 + 𝐶 ) ) |