This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that C and B are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
| 3 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 4 | zsqcl | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 7 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 8 | zsqcl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 11 | gcdadd | ⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) | |
| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 13 | 6 10 | gcdcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 14 | 12 13 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 16 | 2 15 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 17 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐵 ∈ ℕ ) | |
| 18 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐶 ∈ ℕ ) | |
| 19 | sqgcd | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
| 21 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐴 ∈ ℕ ) | |
| 22 | sqgcd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) | |
| 23 | 21 17 22 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 24 | 16 20 23 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) |
| 25 | 24 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) |
| 26 | simp3l | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐴 gcd 𝐵 ) = 1 ) | |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 29 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 30 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 32 | 29 31 | gcdcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 gcd 𝐶 ) ∈ ℕ0 ) |
| 33 | 32 | nn0red | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 gcd 𝐶 ) ∈ ℝ ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) ∈ ℝ ) |
| 35 | 32 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐵 gcd 𝐶 ) ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐵 gcd 𝐶 ) ) |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | 0le1 | ⊢ 0 ≤ 1 | |
| 39 | sq11 | ⊢ ( ( ( ( 𝐵 gcd 𝐶 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 gcd 𝐶 ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) | |
| 40 | 37 38 39 | mpanr12 | ⊢ ( ( ( 𝐵 gcd 𝐶 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 gcd 𝐶 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) |
| 41 | 34 36 40 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) |
| 42 | 28 41 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) = 1 ) |