This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M divides a prime, then M is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprime | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ) ) | |
| 2 | breq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 = 1 ↔ 𝑀 = 1 ) ) | |
| 4 | eqeq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 = 𝑃 ↔ 𝑀 = 𝑃 ) ) | |
| 5 | 3 4 | orbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ↔ ( 𝑀 = 1 ∨ 𝑀 = 𝑃 ) ) ) |
| 6 | orcom | ⊢ ( ( 𝑀 = 1 ∨ 𝑀 = 𝑃 ) ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 8 | 2 7 | imbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ↔ ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) ) |
| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 11 | 1 10 | sylanb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 12 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 13 | iddvds | ⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∥ 𝑃 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ 𝑃 ) |
| 16 | breq1 | ⊢ ( 𝑀 = 𝑃 → ( 𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃 ) ) | |
| 17 | 15 16 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 = 𝑃 → 𝑀 ∥ 𝑃 ) ) |
| 18 | 1dvds | ⊢ ( 𝑃 ∈ ℤ → 1 ∥ 𝑃 ) | |
| 19 | 12 18 | syl | ⊢ ( 𝑃 ∈ ℙ → 1 ∥ 𝑃 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → 1 ∥ 𝑃 ) |
| 21 | breq1 | ⊢ ( 𝑀 = 1 → ( 𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃 ) ) | |
| 22 | 20 21 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 = 1 → 𝑀 ∥ 𝑃 ) ) |
| 23 | 17 22 | jaod | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) → 𝑀 ∥ 𝑃 ) ) |
| 24 | 11 23 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |