This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014) (Revised by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsexp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑚 = 1 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 1 ) ) | |
| 2 | 1 | breq2d | ⊢ ( 𝑚 = 1 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 1 ) ) ) |
| 3 | 2 | bibi1d | ⊢ ( 𝑚 = 1 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑚 = 1 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 6 | 5 | breq2d | ⊢ ( 𝑚 = 𝑘 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ) ) |
| 7 | 6 | bibi1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 11 | 10 | bibi1d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑚 = 𝑁 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 15 | 14 | bibi1d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 17 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 19 | 18 | exp1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 20 | 19 | breq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) |
| 21 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 22 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 23 | 18 21 22 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 24 | 23 | breq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
| 25 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℙ ) | |
| 26 | simpr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 27 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) | |
| 28 | 26 21 27 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
| 29 | simplr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 30 | euclemma | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ↑ 𝑘 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) | |
| 31 | 25 28 29 30 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) |
| 32 | 24 31 | bitrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) |
| 33 | orbi1 | ⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴 ) ) ) | |
| 34 | oridm | ⊢ ( ( 𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴 ) ↔ 𝑃 ∥ 𝐴 ) | |
| 35 | 33 34 | bitrdi | ⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ↔ 𝑃 ∥ 𝐴 ) ) |
| 36 | 35 | bibi2d | ⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 37 | 32 36 | syl5ibcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 38 | 37 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 39 | 38 | a2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
| 40 | 4 8 12 16 20 39 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) |
| 42 | 41 | 3impa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) |