This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdaddm | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( 𝐾 · 𝑀 ) = ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) ) |
| 3 | 2 | oveq2d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = ( 𝑀 gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) ) ) |
| 4 | 3 | eqeq2d | ⊢ ( 𝐾 = if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) → ( ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ↔ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝑀 gcd 𝑁 ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd 𝑁 ) ) | |
| 6 | id | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) | |
| 7 | oveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) = ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) = ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) ) |
| 9 | 6 8 | oveq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝑀 gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) ) ) |
| 10 | 5 9 | eqeq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · 𝑀 ) + 𝑁 ) ) ↔ ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd 𝑁 ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) → ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd 𝑁 ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) ) | |
| 12 | oveq2 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) → ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) = ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) → ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) → ( ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd 𝑁 ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + 𝑁 ) ) ↔ ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) ) ) ) |
| 15 | 0z | ⊢ 0 ∈ ℤ | |
| 16 | 15 | elimel | ⊢ if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) ∈ ℤ |
| 17 | 15 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
| 18 | 15 | elimel | ⊢ if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ∈ ℤ |
| 19 | 16 17 18 | gcdaddmlem | ⊢ ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) = ( if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) gcd ( ( if ( 𝐾 ∈ ℤ , 𝐾 , 0 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) + if ( 𝑁 ∈ ℤ , 𝑁 , 0 ) ) ) |
| 20 | 4 10 14 19 | dedth3h | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) ) |
| 21 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 22 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 23 | mulcl | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝐾 · 𝑀 ) ∈ ℂ ) | |
| 24 | 21 22 23 | syl2an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 · 𝑀 ) ∈ ℂ ) |
| 25 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 26 | addcom | ⊢ ( ( ( 𝐾 · 𝑀 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) | |
| 27 | 24 25 26 | syl2an | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) |
| 28 | 27 | 3impa | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) + 𝑁 ) = ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) ) |
| 30 | 20 29 | eqtrd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) ) |