This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | ||
| pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | ||
| Assertion | pwssplit3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 LMHom 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| 2 | pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | |
| 3 | pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 5 | pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) | |
| 7 | eqid | ⊢ ( ·𝑠 ‘ 𝑍 ) = ( ·𝑠 ‘ 𝑍 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑍 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) | |
| 11 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) | |
| 12 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) | |
| 13 | 1 | pwslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) → 𝑌 ∈ LMod ) |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑌 ∈ LMod ) |
| 15 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) | |
| 16 | 12 15 | ssexd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
| 17 | 2 | pwslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ V ) → 𝑍 ∈ LMod ) |
| 18 | 11 16 17 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑍 ∈ LMod ) |
| 19 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 20 | 2 19 | pwssca | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ V ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑍 ) ) |
| 21 | 11 16 20 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑍 ) ) |
| 22 | 1 19 | pwssca | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑌 ) ) |
| 23 | 11 12 22 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑌 ) ) |
| 24 | 21 23 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑌 ) ) |
| 25 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 26 | 1 2 3 4 5 | pwssplit2 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |
| 27 | 25 26 | syl3an1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |
| 28 | snex | ⊢ { 𝑎 } ∈ V | |
| 29 | xpexg | ⊢ ( ( 𝑈 ∈ 𝑋 ∧ { 𝑎 } ∈ V ) → ( 𝑈 × { 𝑎 } ) ∈ V ) | |
| 30 | 12 28 29 | sylancl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑈 × { 𝑎 } ) ∈ V ) |
| 31 | vex | ⊢ 𝑏 ∈ V | |
| 32 | offres | ⊢ ( ( ( 𝑈 × { 𝑎 } ) ∈ V ∧ 𝑏 ∈ V ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) | |
| 33 | 30 31 32 | sylancl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 35 | xpssres | ⊢ ( 𝑉 ⊆ 𝑈 → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) | |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) |
| 38 | 37 | oveq1d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 40 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 41 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 42 | simpl1 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑊 ∈ LMod ) | |
| 43 | simpl2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑋 ) | |
| 44 | 23 | fveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 45 | 44 | eleq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ) |
| 46 | 45 | biimpar | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 47 | 46 | adantrr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 48 | simprr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 49 | 1 3 40 6 19 41 42 43 47 48 | pwsvscafval | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) = ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) |
| 50 | 49 | reseq1d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) ) |
| 51 | 5 | fvtresfn | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 ↾ 𝑉 ) ) |
| 52 | 51 | ad2antll | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 ↾ 𝑉 ) ) |
| 53 | 52 | oveq2d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 54 | 39 50 53 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 55 | 3 8 6 10 | lmodvscl | ⊢ ( ( 𝑌 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 56 | 55 | 3expb | ⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 57 | 14 56 | sylan | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 58 | 5 | fvtresfn | ⊢ ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
| 59 | 57 58 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
| 60 | 16 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑉 ∈ V ) |
| 61 | 1 2 3 4 5 | pwssplit0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 62 | 61 | ffvelcdmda | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
| 63 | 62 | adantrl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
| 64 | 2 4 40 7 19 41 42 60 47 63 | pwsvscafval | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 65 | 54 59 64 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 66 | 3 6 7 8 9 10 14 18 24 27 65 | islmhmd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 LMHom 𝑍 ) ) |