This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | ||
| pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | ||
| Assertion | pwssplit2 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| 2 | pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | |
| 3 | pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 5 | pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) | |
| 8 | simp1 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ Grp ) | |
| 9 | simp2 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) | |
| 10 | 1 | pwsgrp | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ) → 𝑌 ∈ Grp ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑌 ∈ Grp ) |
| 12 | simp3 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) | |
| 13 | 9 12 | ssexd | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
| 14 | 2 | pwsgrp | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑉 ∈ V ) → 𝑍 ∈ Grp ) |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑍 ∈ Grp ) |
| 16 | 1 2 3 4 5 | pwssplit0 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 17 | offres | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑎 ∘f ( +g ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑎 ↾ 𝑉 ) ∘f ( +g ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ∘f ( +g ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑎 ↾ 𝑉 ) ∘f ( +g ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 19 | 8 | adantr | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑊 ∈ Grp ) |
| 20 | simpl2 | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑋 ) | |
| 21 | simprl | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) | |
| 22 | simprr | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 23 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 24 | 1 3 19 20 21 22 23 6 | pwsplusgval | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑎 ∘f ( +g ‘ 𝑊 ) 𝑏 ) ) |
| 25 | 24 | reseq1d | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑎 ∘f ( +g ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) ) |
| 26 | 5 | fvtresfn | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝐹 ‘ 𝑎 ) = ( 𝑎 ↾ 𝑉 ) ) |
| 27 | 5 | fvtresfn | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 ↾ 𝑉 ) ) |
| 28 | 26 27 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ∘f ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑎 ↾ 𝑉 ) ∘f ( +g ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ∘f ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑎 ↾ 𝑉 ) ∘f ( +g ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
| 30 | 18 25 29 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝐹 ‘ 𝑎 ) ∘f ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 31 | 3 6 | grpcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 32 | 31 | 3expb | ⊢ ( ( 𝑌 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 33 | 11 32 | sylan | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 34 | 5 | fvtresfn | ⊢ ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
| 36 | 13 | adantr | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑉 ∈ V ) |
| 37 | 16 | ffvelcdmda | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
| 38 | 37 | adantrr | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
| 39 | 16 | ffvelcdmda | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
| 40 | 39 | adantrl | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
| 41 | 2 4 19 36 38 40 23 7 | pwsplusgval | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ∘f ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 42 | 30 35 41 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 43 | 3 4 6 7 11 15 16 42 | isghmd | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |