This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| islmim.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | islmim | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | islmim.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | df-lmim | ⊢ LMIso = ( 𝑎 ∈ LMod , 𝑏 ∈ LMod ↦ { 𝑐 ∈ ( 𝑎 LMHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } ) | |
| 4 | ovex | ⊢ ( 𝑎 LMHom 𝑏 ) ∈ V | |
| 5 | 4 | rabex | ⊢ { 𝑐 ∈ ( 𝑎 LMHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } ∈ V |
| 6 | oveq12 | ⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → ( 𝑎 LMHom 𝑏 ) = ( 𝑅 LMHom 𝑆 ) ) | |
| 7 | fveq2 | ⊢ ( 𝑎 = 𝑅 → ( Base ‘ 𝑎 ) = ( Base ‘ 𝑅 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑎 = 𝑅 → ( Base ‘ 𝑎 ) = 𝐵 ) |
| 9 | fveq2 | ⊢ ( 𝑏 = 𝑆 → ( Base ‘ 𝑏 ) = ( Base ‘ 𝑆 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑏 = 𝑆 → ( Base ‘ 𝑏 ) = 𝐶 ) |
| 11 | f1oeq23 | ⊢ ( ( ( Base ‘ 𝑎 ) = 𝐵 ∧ ( Base ‘ 𝑏 ) = 𝐶 ) → ( 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) ↔ 𝑐 : 𝐵 –1-1-onto→ 𝐶 ) ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → ( 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) ↔ 𝑐 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 13 | 6 12 | rabeqbidv | ⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → { 𝑐 ∈ ( 𝑎 LMHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } = { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) |
| 14 | 3 5 13 | elovmpo | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ) |
| 15 | df-3an | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ↔ ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ) | |
| 16 | f1oeq1 | ⊢ ( 𝑐 = 𝐹 → ( 𝑐 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) | |
| 17 | 16 | elrab | ⊢ ( 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 18 | 17 | anbi2i | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ↔ ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
| 19 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → 𝑅 ∈ LMod ) | |
| 20 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → 𝑆 ∈ LMod ) | |
| 21 | 19 20 | jca | ⊢ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ) |
| 23 | 22 | pm4.71ri | ⊢ ( ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ↔ ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
| 24 | 18 23 | bitr4i | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝑆 ∈ LMod ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 LMHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 25 | 14 15 24 | 3bitri | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |