This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsvscaval.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsvscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsvscaval.s | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | ||
| pwsvscaval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑅 ) | ||
| pwsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| pwsvscaval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| pwsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| pwsvscaval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| pwsvscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | pwsvscafval | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsvscaval.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsvscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsvscaval.s | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 4 | pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | |
| 5 | pwsvscaval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑅 ) | |
| 6 | pwsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 7 | pwsvscaval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 8 | pwsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 9 | pwsvscaval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 10 | pwsvscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 5 | pwsval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 12 | 7 8 11 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 14 | 4 13 | eqtrid | ⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 15 | 14 | oveqd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) 𝑋 ) ) |
| 16 | eqid | ⊢ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) | |
| 17 | eqid | ⊢ ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 18 | eqid | ⊢ ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 19 | 5 | fvexi | ⊢ 𝐹 ∈ V |
| 20 | 19 | a1i | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 21 | fnconstg | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) | |
| 22 | 7 21 | syl | ⊢ ( 𝜑 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
| 23 | 12 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 24 | 2 23 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 25 | 10 24 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 26 | 16 17 18 6 20 8 22 9 25 | prdsvscaval | ⊢ ( 𝜑 → ( 𝐴 ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 27 | fvconst2g | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 28 | 7 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( ·𝑠 ‘ 𝑅 ) ) |
| 30 | 29 3 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = · ) |
| 31 | 30 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) |
| 32 | 31 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 33 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ 𝐾 ) |
| 34 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ V ) | |
| 35 | fconstmpt | ⊢ ( 𝐼 × { 𝐴 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) | |
| 36 | 35 | a1i | ⊢ ( 𝜑 → ( 𝐼 × { 𝐴 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ) |
| 37 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 38 | 1 37 2 7 8 10 | pwselbas | ⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 | 38 | feqmptd | ⊢ ( 𝜑 → 𝑋 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 40 | 8 33 34 36 39 | offval2 | ⊢ ( 𝜑 → ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 41 | 32 40 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 42 | 15 26 41 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |