This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhmd.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| islmhmd.a | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| islmhmd.b | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | ||
| islmhmd.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | ||
| islmhmd.j | ⊢ 𝐽 = ( Scalar ‘ 𝑇 ) | ||
| islmhmd.n | ⊢ 𝑁 = ( Base ‘ 𝐾 ) | ||
| islmhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) | ||
| islmhmd.t | ⊢ ( 𝜑 → 𝑇 ∈ LMod ) | ||
| islmhmd.c | ⊢ ( 𝜑 → 𝐽 = 𝐾 ) | ||
| islmhmd.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | ||
| islmhmd.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | islmhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | islmhmd.a | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 3 | islmhmd.b | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | |
| 4 | islmhmd.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 5 | islmhmd.j | ⊢ 𝐽 = ( Scalar ‘ 𝑇 ) | |
| 6 | islmhmd.n | ⊢ 𝑁 = ( Base ‘ 𝐾 ) | |
| 7 | islmhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) | |
| 8 | islmhmd.t | ⊢ ( 𝜑 → 𝑇 ∈ LMod ) | |
| 9 | islmhmd.c | ⊢ ( 𝜑 → 𝐽 = 𝐾 ) | |
| 10 | islmhmd.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 11 | islmhmd.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) | |
| 12 | 11 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | 10 9 12 | 3jca | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐽 = 𝐾 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 14 | 4 5 6 1 2 3 | islmhm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐽 = 𝐾 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 15 | 7 8 13 14 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |