This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | ||
| pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | ||
| Assertion | pwssplit0 | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| 2 | pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | |
| 3 | pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 5 | pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 1 6 3 | pwselbasb | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) |
| 10 | simpl3 | ⊢ ( ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑉 ⊆ 𝑈 ) | |
| 11 | 9 10 | fssresd | ⊢ ( ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ↾ 𝑉 ) : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) |
| 12 | simp1 | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ 𝑇 ) | |
| 13 | simp2 | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) | |
| 14 | simp3 | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) | |
| 15 | 13 14 | ssexd | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
| 16 | 2 6 4 | pwselbasb | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑉 ∈ V ) → ( ( 𝑥 ↾ 𝑉 ) ∈ 𝐶 ↔ ( 𝑥 ↾ 𝑉 ) : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑥 ↾ 𝑉 ) ∈ 𝐶 ↔ ( 𝑥 ↾ 𝑉 ) : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ↾ 𝑉 ) ∈ 𝐶 ↔ ( 𝑥 ↾ 𝑉 ) : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 19 | 11 18 | mpbird | ⊢ ( ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ↾ 𝑉 ) ∈ 𝐶 ) |
| 20 | 19 5 | fmptd | ⊢ ( ( 𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |