This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure power of a left module is a left module. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwslmod.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| Assertion | pwslmod | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwslmod.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 3 | 1 2 | pwsval | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 4 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 5 | 2 | lmodring | ⊢ ( 𝑅 ∈ LMod → ( Scalar ‘ 𝑅 ) ∈ Ring ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ Ring ) |
| 7 | simpr | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 8 | fconst6g | ⊢ ( 𝑅 ∈ LMod → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ LMod ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ LMod ) |
| 10 | fvconst2g | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Scalar ‘ 𝑅 ) ) |
| 13 | 4 6 7 9 12 | prdslmodd | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ LMod ) |
| 14 | 3 13 | eqeltrd | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ LMod ) |