This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssca.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwssca.s | ⊢ 𝑆 = ( Scalar ‘ 𝑅 ) | ||
| Assertion | pwssca | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑆 = ( Scalar ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssca.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwssca.s | ⊢ 𝑆 = ( Scalar ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 𝑆 Xs ( 𝐼 × { 𝑅 } ) ) = ( 𝑆 Xs ( 𝐼 × { 𝑅 } ) ) | |
| 4 | 2 | fvexi | ⊢ 𝑆 ∈ V |
| 5 | 4 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑆 ∈ V ) |
| 6 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 7 | snex | ⊢ { 𝑅 } ∈ V | |
| 8 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑅 } ∈ V ) → ( 𝐼 × { 𝑅 } ) ∈ V ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 𝑅 } ) ∈ V ) |
| 10 | 3 5 9 | prdssca | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑆 = ( Scalar ‘ ( 𝑆 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 11 | 1 2 | pwsval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( 𝑆 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑌 ) = ( Scalar ‘ ( 𝑆 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 13 | 10 12 | eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑆 = ( Scalar ‘ 𝑌 ) ) |