This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | |- Y = ( W ^s U ) |
|
| pwssplit1.z | |- Z = ( W ^s V ) |
||
| pwssplit1.b | |- B = ( Base ` Y ) |
||
| pwssplit1.c | |- C = ( Base ` Z ) |
||
| pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
||
| Assertion | pwssplit3 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F e. ( Y LMHom Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | |- Y = ( W ^s U ) |
|
| 2 | pwssplit1.z | |- Z = ( W ^s V ) |
|
| 3 | pwssplit1.b | |- B = ( Base ` Y ) |
|
| 4 | pwssplit1.c | |- C = ( Base ` Z ) |
|
| 5 | pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
|
| 6 | eqid | |- ( .s ` Y ) = ( .s ` Y ) |
|
| 7 | eqid | |- ( .s ` Z ) = ( .s ` Z ) |
|
| 8 | eqid | |- ( Scalar ` Y ) = ( Scalar ` Y ) |
|
| 9 | eqid | |- ( Scalar ` Z ) = ( Scalar ` Z ) |
|
| 10 | eqid | |- ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) |
|
| 11 | simp1 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> W e. LMod ) |
|
| 12 | simp2 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> U e. X ) |
|
| 13 | 1 | pwslmod | |- ( ( W e. LMod /\ U e. X ) -> Y e. LMod ) |
| 14 | 11 12 13 | syl2anc | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> Y e. LMod ) |
| 15 | simp3 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> V C_ U ) |
|
| 16 | 12 15 | ssexd | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> V e. _V ) |
| 17 | 2 | pwslmod | |- ( ( W e. LMod /\ V e. _V ) -> Z e. LMod ) |
| 18 | 11 16 17 | syl2anc | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> Z e. LMod ) |
| 19 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 20 | 2 19 | pwssca | |- ( ( W e. LMod /\ V e. _V ) -> ( Scalar ` W ) = ( Scalar ` Z ) ) |
| 21 | 11 16 20 | syl2anc | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` W ) = ( Scalar ` Z ) ) |
| 22 | 1 19 | pwssca | |- ( ( W e. LMod /\ U e. X ) -> ( Scalar ` W ) = ( Scalar ` Y ) ) |
| 23 | 11 12 22 | syl2anc | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` W ) = ( Scalar ` Y ) ) |
| 24 | 21 23 | eqtr3d | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` Z ) = ( Scalar ` Y ) ) |
| 25 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 26 | 1 2 3 4 5 | pwssplit2 | |- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> F e. ( Y GrpHom Z ) ) |
| 27 | 25 26 | syl3an1 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F e. ( Y GrpHom Z ) ) |
| 28 | snex | |- { a } e. _V |
|
| 29 | xpexg | |- ( ( U e. X /\ { a } e. _V ) -> ( U X. { a } ) e. _V ) |
|
| 30 | 12 28 29 | sylancl | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( U X. { a } ) e. _V ) |
| 31 | vex | |- b e. _V |
|
| 32 | offres | |- ( ( ( U X. { a } ) e. _V /\ b e. _V ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
|
| 33 | 30 31 32 | sylancl | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
| 34 | 33 | adantr | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
| 35 | xpssres | |- ( V C_ U -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
|
| 36 | 35 | 3ad2ant3 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
| 37 | 36 | adantr | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
| 38 | 37 | oveq1d | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
| 39 | 34 38 | eqtrd | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
| 40 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 41 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 42 | simpl1 | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> W e. LMod ) |
|
| 43 | simpl2 | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> U e. X ) |
|
| 44 | 23 | fveq2d | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` Y ) ) ) |
| 45 | 44 | eleq2d | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( a e. ( Base ` ( Scalar ` W ) ) <-> a e. ( Base ` ( Scalar ` Y ) ) ) ) |
| 46 | 45 | biimpar | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ a e. ( Base ` ( Scalar ` Y ) ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
| 47 | 46 | adantrr | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
| 48 | simprr | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> b e. B ) |
|
| 49 | 1 3 40 6 19 41 42 43 47 48 | pwsvscafval | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) = ( ( U X. { a } ) oF ( .s ` W ) b ) ) |
| 50 | 49 | reseq1d | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( a ( .s ` Y ) b ) |` V ) = ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) ) |
| 51 | 5 | fvtresfn | |- ( b e. B -> ( F ` b ) = ( b |` V ) ) |
| 52 | 51 | ad2antll | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` b ) = ( b |` V ) ) |
| 53 | 52 | oveq2d | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
| 54 | 39 50 53 | 3eqtr4d | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( a ( .s ` Y ) b ) |` V ) = ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) ) |
| 55 | 3 8 6 10 | lmodvscl | |- ( ( Y e. LMod /\ a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) -> ( a ( .s ` Y ) b ) e. B ) |
| 56 | 55 | 3expb | |- ( ( Y e. LMod /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) e. B ) |
| 57 | 14 56 | sylan | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) e. B ) |
| 58 | 5 | fvtresfn | |- ( ( a ( .s ` Y ) b ) e. B -> ( F ` ( a ( .s ` Y ) b ) ) = ( ( a ( .s ` Y ) b ) |` V ) ) |
| 59 | 57 58 | syl | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` Y ) b ) ) = ( ( a ( .s ` Y ) b ) |` V ) ) |
| 60 | 16 | adantr | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> V e. _V ) |
| 61 | 1 2 3 4 5 | pwssplit0 | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F : B --> C ) |
| 62 | 61 | ffvelcdmda | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ b e. B ) -> ( F ` b ) e. C ) |
| 63 | 62 | adantrl | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` b ) e. C ) |
| 64 | 2 4 40 7 19 41 42 60 47 63 | pwsvscafval | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Z ) ( F ` b ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) ) |
| 65 | 54 59 64 | 3eqtr4d | |- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` Y ) b ) ) = ( a ( .s ` Z ) ( F ` b ) ) ) |
| 66 | 3 6 7 8 9 10 14 18 24 27 65 | islmhmd | |- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F e. ( Y LMHom Z ) ) |