This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group sum commutation used by psrass1 . (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | ||
| gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
| gsumbagdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| gsumbagdiag.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumbagdiag.x | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑋 ∈ 𝐵 ) | ||
| psrass1lem.y | ⊢ ( 𝑘 = ( 𝑛 ∘f − 𝑗 ) → 𝑋 = 𝑌 ) | ||
| Assertion | psrass1lem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | |
| 3 | gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
| 4 | gsumbagdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 5 | gsumbagdiag.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 6 | gsumbagdiag.x | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | psrass1lem.y | ⊢ ( 𝑘 = ( 𝑛 ∘f − 𝑗 ) → 𝑋 = 𝑌 ) | |
| 8 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) |
| 9 | 6 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑋 ∈ 𝐵 ) |
| 10 | 9 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 11 | 2 | ssrab3 | ⊢ 𝑆 ⊆ 𝐷 |
| 12 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝑆 ) |
| 13 | 3 12 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝑆 ) |
| 14 | 11 13 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 15 | eqid | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } | |
| 16 | 1 15 | psrbagconf1o | ⊢ ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 17 | 14 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 18 | f1of | ⊢ ( ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 20 | 10 19 | fcod | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 21 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐹 ∈ 𝐷 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 ∈ 𝐷 ) |
| 23 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) |
| 26 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 ∈ 𝑆 ) | |
| 27 | 11 26 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 ∈ 𝐷 ) |
| 28 | 1 | psrbagf | ⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 29 | 27 28 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 30 | 29 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 31 | ssrab2 | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⊆ 𝐷 | |
| 32 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) | |
| 33 | 31 32 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 ∈ 𝐷 ) |
| 34 | 1 | psrbagf | ⊢ ( 𝑚 ∈ 𝐷 → 𝑚 : 𝐼 ⟶ ℕ0 ) |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
| 36 | 35 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 ) |
| 37 | nn0cn | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | |
| 38 | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) | |
| 39 | nn0cn | ⊢ ( ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑚 ‘ 𝑧 ) ∈ ℂ ) | |
| 40 | sub32 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑚 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) | |
| 41 | 37 38 39 40 | syl3an | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) |
| 42 | 25 30 36 41 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 44 | 35 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 Fn 𝐼 ) |
| 45 | 32 44 | fndmexd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐼 ∈ V ) |
| 46 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) | |
| 47 | 24 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 | 29 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 49 | 45 25 30 47 48 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝐹 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 50 | 35 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑚 ‘ 𝑧 ) ) ) |
| 51 | 45 46 36 49 50 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) ) ) |
| 52 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) ∈ V ) | |
| 53 | 45 25 36 47 50 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝐹 ∘f − 𝑚 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) ) ) |
| 54 | 45 52 30 53 48 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 55 | 43 51 54 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) |
| 56 | 1 15 | psrbagconcl | ⊢ ( ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 57 | 14 56 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 58 | 55 57 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 59 | 55 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) = ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) ) |
| 60 | nfcv | ⊢ Ⅎ 𝑛 𝑋 | |
| 61 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝑋 | |
| 62 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝑋 = ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) | |
| 63 | 60 61 62 | cbvmpt | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑛 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) |
| 64 | 63 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑛 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) ) |
| 65 | csbeq1 | ⊢ ( 𝑛 = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝑋 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) | |
| 66 | 58 59 64 65 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) = ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 67 | 66 | feq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ↔ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) ) |
| 68 | 20 67 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 69 | 68 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 70 | 69 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 71 | 8 70 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 72 | 1 2 3 4 5 71 | gsumbagdiag | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 73 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 74 | 1 | psrbaglefi | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 75 | 3 74 | syl | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 76 | 2 75 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 77 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝑆 ) |
| 78 | 3 77 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝑆 ) |
| 79 | 11 78 | sselid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝐷 ) |
| 80 | 1 | psrbaglefi | ⊢ ( ( 𝐹 ∘f − 𝑚 ) ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ) |
| 81 | 79 80 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ) |
| 82 | xpfi | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ∈ Fin ) → ( 𝑆 × 𝑆 ) ∈ Fin ) | |
| 83 | 76 76 82 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ Fin ) |
| 84 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑚 ∈ 𝑆 ) | |
| 85 | 8 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑗 ∈ 𝑆 ) |
| 86 | brxp | ⊢ ( 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ↔ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ 𝑆 ) ) | |
| 87 | 84 85 86 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ) |
| 88 | 87 | pm2.24d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( ¬ 𝑚 ( 𝑆 × 𝑆 ) 𝑗 → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 89 | 88 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ∧ ¬ 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 90 | 4 73 5 76 81 71 83 89 | gsum2d2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 91 | 1 | psrbaglefi | ⊢ ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ) |
| 92 | 14 91 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ) |
| 93 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ∈ 𝑆 ) | |
| 94 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) |
| 95 | 94 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑚 ∈ 𝑆 ) |
| 96 | brxp | ⊢ ( 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ↔ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ 𝑆 ) ) | |
| 97 | 93 95 96 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ) |
| 98 | 97 | pm2.24d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑚 → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 99 | 98 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 100 | 4 73 5 76 92 70 83 99 | gsum2d2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 101 | 72 90 100 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 102 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
| 103 | 71 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 104 | 103 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ⟶ 𝐵 ) |
| 105 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 106 | 1 105 | rabex2 | ⊢ 𝐷 ∈ V |
| 107 | 106 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → 𝐷 ∈ V ) |
| 108 | rabexg | ⊢ ( 𝐷 ∈ V → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ V ) | |
| 109 | mptexg | ⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ V → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ) | |
| 110 | 107 108 109 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ) |
| 111 | funmpt | ⊢ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) | |
| 112 | 111 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 113 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 114 | suppssdm | ⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) | |
| 115 | eqid | ⊢ ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) = ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) | |
| 116 | 115 | dmmptss | ⊢ dom ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } |
| 117 | 114 116 | sstri | ⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } |
| 118 | 117 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) |
| 119 | suppssfifsupp | ⊢ ( ( ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ∧ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) | |
| 120 | 110 112 113 81 118 119 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 121 | 4 73 102 81 104 120 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
| 122 | 121 | fmpttd | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 123 | 1 2 | psrbagconf1o | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 124 | 3 123 | syl | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 125 | f1ocnv | ⊢ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) | |
| 126 | f1of | ⊢ ( ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 ⟶ 𝑆 ) | |
| 127 | 124 125 126 | 3syl | ⊢ ( 𝜑 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 ⟶ 𝑆 ) |
| 128 | 122 127 | fcod | ⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 129 | coass | ⊢ ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) | |
| 130 | f1ococnv2 | ⊢ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( I ↾ 𝑆 ) ) | |
| 131 | 124 130 | syl | ⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( I ↾ 𝑆 ) ) |
| 132 | 131 | coeq2d | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) ) |
| 133 | 129 132 | eqtrid | ⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) ) |
| 134 | eqidd | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) = ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) | |
| 135 | eqidd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) | |
| 136 | breq2 | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑥 ∘r ≤ 𝑛 ↔ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) ) ) | |
| 137 | 136 | rabbidv | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) |
| 138 | ovex | ⊢ ( 𝑛 ∘f − 𝑗 ) ∈ V | |
| 139 | 138 7 | csbie | ⊢ ⦋ ( 𝑛 ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = 𝑌 |
| 140 | oveq1 | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑛 ∘f − 𝑗 ) = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) | |
| 141 | 140 | csbeq1d | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ⦋ ( 𝑛 ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 142 | 139 141 | eqtr3id | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → 𝑌 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 143 | 137 142 | mpteq12dv | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) = ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 144 | 143 | oveq2d | ⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 145 | 78 134 135 144 | fmptco | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) |
| 146 | 145 | coeq1d | ⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) |
| 147 | coires1 | ⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) | |
| 148 | ssid | ⊢ 𝑆 ⊆ 𝑆 | |
| 149 | resmpt | ⊢ ( 𝑆 ⊆ 𝑆 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) | |
| 150 | 148 149 | ax-mp | ⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 151 | 147 150 | eqtri | ⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 152 | 151 | a1i | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 153 | 133 146 152 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 154 | 153 | feq1d | ⊢ ( 𝜑 → ( ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) : 𝑆 ⟶ 𝐵 ↔ ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) ) |
| 155 | 128 154 | mpbid | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 156 | rabexg | ⊢ ( 𝐷 ∈ V → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ V ) | |
| 157 | 106 156 | mp1i | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ V ) |
| 158 | 2 157 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 159 | 158 | mptexd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∈ V ) |
| 160 | funmpt | ⊢ Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) | |
| 161 | 160 | a1i | ⊢ ( 𝜑 → Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 162 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 163 | suppssdm | ⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) | |
| 164 | eqid | ⊢ ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) | |
| 165 | 164 | dmmptss | ⊢ dom ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ⊆ 𝑆 |
| 166 | 163 165 | sstri | ⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 |
| 167 | 166 | a1i | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 ) |
| 168 | suppssfifsupp | ⊢ ( ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( 𝑆 ∈ Fin ∧ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 ) ) → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) finSupp ( 0g ‘ 𝐺 ) ) | |
| 169 | 159 161 162 76 167 168 | syl32anc | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 170 | 4 73 5 76 155 169 124 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) ) |
| 171 | 145 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 172 | 170 171 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 173 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
| 174 | 106 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐷 ∈ V ) |
| 175 | rabexg | ⊢ ( 𝐷 ∈ V → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V ) | |
| 176 | mptexg | ⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ) | |
| 177 | 174 175 176 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ) |
| 178 | funmpt | ⊢ Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) | |
| 179 | 178 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) |
| 180 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 181 | suppssdm | ⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) | |
| 182 | eqid | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) | |
| 183 | 182 | dmmptss | ⊢ dom ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } |
| 184 | 181 183 | sstri | ⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } |
| 185 | 184 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 186 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) | |
| 187 | 177 179 180 92 185 186 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 188 | 4 73 173 92 10 187 17 | gsumf1o | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) ) ) |
| 189 | 66 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 190 | 188 189 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 191 | 190 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) |
| 192 | 191 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 193 | 101 172 192 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) ) ) |