This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | ||
| gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
| gsumbagdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| gsumbagdiag.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumbagdiag.x | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑋 ∈ 𝐵 ) | ||
| Assertion | gsumbagdiag | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑘 ) } ↦ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | |
| 3 | gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
| 4 | gsumbagdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 5 | gsumbagdiag.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 6 | gsumbagdiag.x | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 1 | psrbaglefi | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 10 | 2 9 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 11 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 12 | 1 11 | rab2ex | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V ) |
| 14 | xpfi | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ∈ Fin ) → ( 𝑆 × 𝑆 ) ∈ Fin ) | |
| 15 | 10 10 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ Fin ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ∈ 𝑆 ) | |
| 17 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( 𝑘 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑘 ) } ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑘 ∈ 𝑆 ) |
| 19 | brxp | ⊢ ( 𝑗 ( 𝑆 × 𝑆 ) 𝑘 ↔ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) | |
| 20 | 16 18 19 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ( 𝑆 × 𝑆 ) 𝑘 ) |
| 21 | 20 | pm2.24d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑘 → 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 22 | 21 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑘 ) ) → 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 23 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑘 ) } ) ) → ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) |
| 24 | 17 23 | impbida | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ↔ ( 𝑘 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑘 ) } ) ) ) |
| 25 | 4 7 5 10 13 6 15 22 10 24 | gsumcom2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑘 ) } ↦ 𝑋 ) ) ) |