This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a group sum over a two-dimensional region as a double sum. Note that C ( j ) is a function of j . (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | ||
| gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | ||
| Assertion | gsum2d2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | |
| 6 | gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 8 | gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | |
| 9 | vsnex | ⊢ { 𝑗 } ∈ V | |
| 10 | xpexg | ⊢ ( ( { 𝑗 } ∈ V ∧ 𝐶 ∈ 𝑊 ) → ( { 𝑗 } × 𝐶 ) ∈ V ) | |
| 11 | 9 5 10 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 13 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) | |
| 14 | 4 12 13 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 15 | relxp | ⊢ Rel ( { 𝑗 } × 𝐶 ) | |
| 16 | 15 | rgenw | ⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) |
| 17 | reliun | ⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) ) | |
| 18 | 16 17 | mpbir | ⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 20 | vex | ⊢ 𝑥 ∈ V | |
| 21 | 20 | eldm2 | ⊢ ( 𝑥 ∈ dom ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 22 | eliunxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ) | |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 20 23 | opth1 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 → 𝑥 = 𝑗 ) |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ) → 𝑥 = 𝑗 ) |
| 26 | simprrl | ⊢ ( ( 𝜑 ∧ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ) → 𝑗 ∈ 𝐴 ) | |
| 27 | 25 26 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐴 ) ) |
| 29 | 28 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐴 ) ) |
| 30 | 22 29 | biimtrid | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) → 𝑥 ∈ 𝐴 ) ) |
| 31 | 30 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) → 𝑥 ∈ 𝐴 ) ) |
| 32 | 21 31 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) → 𝑥 ∈ 𝐴 ) ) |
| 33 | 32 | ssrdv | ⊢ ( 𝜑 → dom ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⊆ 𝐴 ) |
| 34 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ) |
| 35 | eqid | ⊢ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) = ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 36 | 35 | fmpox | ⊢ ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 37 | 34 36 | sylib | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 38 | 1 2 3 4 5 6 7 8 | gsum2d2lem | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ) |
| 39 | 1 2 3 14 19 4 33 37 38 | gsum2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) ) ) |
| 40 | nfcv | ⊢ Ⅎ 𝑗 𝐺 | |
| 41 | nfcv | ⊢ Ⅎ 𝑗 Σg | |
| 42 | nfiu1 | ⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) | |
| 43 | nfcv | ⊢ Ⅎ 𝑗 { 𝑚 } | |
| 44 | 42 43 | nfima | ⊢ Ⅎ 𝑗 ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) |
| 45 | nfcv | ⊢ Ⅎ 𝑗 𝑚 | |
| 46 | nfmpo1 | ⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 47 | nfcv | ⊢ Ⅎ 𝑗 𝑛 | |
| 48 | 45 46 47 | nfov | ⊢ Ⅎ 𝑗 ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) |
| 49 | 44 48 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) |
| 50 | 40 41 49 | nfov | ⊢ Ⅎ 𝑗 ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) |
| 51 | nfcv | ⊢ Ⅎ 𝑚 ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) | |
| 52 | sneq | ⊢ ( 𝑚 = 𝑗 → { 𝑚 } = { 𝑗 } ) | |
| 53 | 52 | imaeq2d | ⊢ ( 𝑚 = 𝑗 → ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) = ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ) |
| 54 | oveq1 | ⊢ ( 𝑚 = 𝑗 → ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) = ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) | |
| 55 | 53 54 | mpteq12dv | ⊢ ( 𝑚 = 𝑗 → ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) |
| 56 | 55 | oveq2d | ⊢ ( 𝑚 = 𝑗 → ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) = ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) |
| 57 | 50 51 56 | cbvmpt | ⊢ ( 𝑚 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) = ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) |
| 58 | vex | ⊢ 𝑗 ∈ V | |
| 59 | vex | ⊢ 𝑘 ∈ V | |
| 60 | 58 59 | elimasn | ⊢ ( 𝑘 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 61 | opeliunxp | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) | |
| 62 | 60 61 | bitri | ⊢ ( 𝑘 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) |
| 63 | 62 | baib | ⊢ ( 𝑗 ∈ 𝐴 → ( 𝑘 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↔ 𝑘 ∈ 𝐶 ) ) |
| 64 | 63 | eqrdv | ⊢ ( 𝑗 ∈ 𝐴 → ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) = 𝐶 ) |
| 65 | 64 | mpteq1d | ⊢ ( 𝑗 ∈ 𝐴 → ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑛 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) |
| 66 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 67 | nfmpo2 | ⊢ Ⅎ 𝑘 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 68 | nfcv | ⊢ Ⅎ 𝑘 𝑛 | |
| 69 | 66 67 68 | nfov | ⊢ Ⅎ 𝑘 ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) |
| 70 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) | |
| 71 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) = ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) | |
| 72 | 69 70 71 | cbvmpt | ⊢ ( 𝑛 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) |
| 73 | 65 72 | eqtrdi | ⊢ ( 𝑗 ∈ 𝐴 → ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) ) |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) ) |
| 75 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑗 ∈ 𝐴 ) | |
| 76 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑘 ∈ 𝐶 ) | |
| 77 | 35 | ovmpt4g | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 78 | 75 76 6 77 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 79 | 78 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 80 | 79 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) = ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) |
| 81 | 74 80 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) = ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) |
| 82 | 81 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) |
| 83 | 82 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) = ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) |
| 84 | 57 83 | eqtrid | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) = ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) |
| 85 | 84 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑛 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) “ { 𝑚 } ) ↦ ( 𝑚 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑛 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) ) |
| 86 | 39 85 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) ) |