This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | ||
| psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrass.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | psrass1 | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | psrass.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 12 | 1 6 5 3 11 9 | psrmulcl | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) ∈ 𝐵 ) |
| 13 | 1 10 4 6 12 | psrelbas | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | ffnd | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) Fn 𝐷 ) |
| 15 | 1 6 5 3 8 9 | psrmulcl | ⊢ ( 𝜑 → ( 𝑌 × 𝑍 ) ∈ 𝐵 ) |
| 16 | 1 6 5 3 7 15 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) ∈ 𝐵 ) |
| 17 | 1 10 4 6 16 | psrelbas | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | 17 | ffnd | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) Fn 𝐷 ) |
| 19 | eqid | ⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } = { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } | |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) | |
| 21 | 3 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 23 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 24 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑅 ∈ Ring ) |
| 25 | 1 10 4 6 7 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) | |
| 28 | breq1 | ⊢ ( 𝑔 = 𝑗 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥 ) ) | |
| 29 | 28 | elrab | ⊢ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 30 | 27 29 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 31 | 30 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝐷 ) |
| 32 | 26 31 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 1 10 4 6 8 | psrelbas | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) | |
| 37 | breq1 | ⊢ ( ℎ = 𝑛 → ( ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ↔ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) | |
| 38 | 37 | elrab | ⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 39 | 36 38 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 40 | 39 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∈ 𝐷 ) |
| 41 | 35 40 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑌 ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 | 1 10 4 6 9 | psrelbas | ⊢ ( 𝜑 → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 44 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) | |
| 45 | 4 | psrbagf | ⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 46 | 31 45 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 47 | 30 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∘r ≤ 𝑥 ) |
| 48 | 4 | psrbagcon | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 49 | 44 46 47 48 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 50 | 49 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 52 | 4 | psrbagf | ⊢ ( 𝑛 ∈ 𝐷 → 𝑛 : 𝐼 ⟶ ℕ0 ) |
| 53 | 40 52 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 : 𝐼 ⟶ ℕ0 ) |
| 54 | 39 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) |
| 55 | 4 | psrbagcon | ⊢ ( ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ 𝑛 : 𝐼 ⟶ ℕ0 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) → ( ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 56 | 51 53 54 55 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 57 | 56 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ) |
| 58 | 43 57 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 | 10 23 24 41 58 | ringcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 | 10 23 24 33 59 | ringcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 61 | 60 | anasss | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 62 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( 𝑌 ‘ 𝑛 ) = ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) | |
| 63 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) = ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) | |
| 64 | 63 | fveq2d | ⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) = ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 65 | 62 64 | oveq12d | ⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) |
| 66 | 65 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 67 | 4 19 20 10 22 61 66 | psrass1lem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) ) |
| 68 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 ∈ 𝐵 ) |
| 69 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 ∈ 𝐵 ) |
| 70 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) | |
| 71 | breq1 | ⊢ ( 𝑔 = 𝑘 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥 ) ) | |
| 72 | 71 | elrab | ⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 73 | 70 72 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 74 | 73 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ 𝐷 ) |
| 75 | 1 6 23 5 4 68 69 74 | psrmulval | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 76 | 75 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 77 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 78 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 79 | 4 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ∈ Fin ) |
| 80 | 74 79 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ∈ Fin ) |
| 81 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 82 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) | |
| 83 | 4 | psrbagf | ⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 84 | 74 83 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 85 | 73 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∘r ≤ 𝑥 ) |
| 86 | 4 | psrbagcon | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ∧ 𝑘 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 87 | 82 84 85 86 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 88 | 87 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ) |
| 89 | 81 88 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 90 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 91 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 92 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) | |
| 93 | breq1 | ⊢ ( ℎ = 𝑗 → ( ℎ ∘r ≤ 𝑘 ↔ 𝑗 ∘r ≤ 𝑘 ) ) | |
| 94 | 93 | elrab | ⊢ ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘 ) ) |
| 95 | 92 94 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘 ) ) |
| 96 | 95 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∈ 𝐷 ) |
| 97 | 91 96 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 99 | 74 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 100 | 96 45 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 101 | 95 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∘r ≤ 𝑘 ) |
| 102 | 4 | psrbagcon | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑘 ) → ( ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑗 ) ∘r ≤ 𝑘 ) ) |
| 103 | 99 100 101 102 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑗 ) ∘r ≤ 𝑘 ) ) |
| 104 | 103 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 105 | 98 104 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 106 | 10 23 90 97 105 | ringcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 107 | eqid | ⊢ ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) = ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) | |
| 108 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 109 | 108 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 110 | 107 80 106 109 | fsuppmptdm | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 111 | 10 77 23 78 80 89 106 110 | gsummulc1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 112 | 89 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 113 | 10 23 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 114 | 90 97 105 112 113 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 115 | 4 | psrbagf | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 116 | 115 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 117 | 116 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ) |
| 118 | 84 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 119 | 118 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 120 | 100 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 121 | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑧 ) ∈ ℂ ) | |
| 122 | nn0cn | ⊢ ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑧 ) ∈ ℂ ) | |
| 123 | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) | |
| 124 | nnncan2 | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) | |
| 125 | 121 122 123 124 | syl3an | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) |
| 126 | 117 119 120 125 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) |
| 127 | 126 | mpteq2dva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) ) |
| 128 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑉 ) |
| 129 | ovexd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) | |
| 130 | ovexd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) | |
| 131 | 116 | feqmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑥 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 132 | 100 | feqmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 133 | 128 117 120 131 132 | offval2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 134 | 118 | feqmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) ) |
| 135 | 128 119 120 134 132 | offval2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 136 | 128 129 130 133 135 | offval2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) ) |
| 137 | 128 117 119 131 134 | offval2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f − 𝑘 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) ) |
| 138 | 127 136 137 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) = ( 𝑥 ∘f − 𝑘 ) ) |
| 139 | 138 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) = ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) |
| 140 | 139 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 141 | 140 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 142 | 114 141 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 143 | 142 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 144 | 143 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) |
| 145 | 76 111 144 | 3eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) |
| 146 | 145 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) |
| 147 | 146 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) ) |
| 148 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 ∈ 𝐵 ) |
| 149 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑍 ∈ 𝐵 ) |
| 150 | 1 6 23 5 4 148 149 50 | psrmulval | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) |
| 151 | 150 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 152 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 153 | 4 | psrbaglefi | ⊢ ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ) |
| 154 | 50 153 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ) |
| 155 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 156 | 4 155 | rab2ex | ⊢ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ V |
| 157 | 156 | mptex | ⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V |
| 158 | funmpt | ⊢ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) | |
| 159 | 157 158 108 | 3pm3.2i | ⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 160 | 159 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 161 | suppssdm | ⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) | |
| 162 | eqid | ⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) = ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) | |
| 163 | 162 | dmmptss | ⊢ dom ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } |
| 164 | 161 163 | sstri | ⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } |
| 165 | 164 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) |
| 166 | suppssfifsupp | ⊢ ( ( ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ∧ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) ) → ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 167 | 160 154 165 166 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 168 | 10 77 23 152 154 32 59 167 | gsummulc2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 169 | 151 168 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 170 | 169 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) |
| 171 | 170 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) ) |
| 172 | 67 147 171 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 173 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 174 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ∈ 𝐵 ) |
| 175 | 1 6 23 5 4 173 174 20 | psrmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) |
| 176 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑋 ∈ 𝐵 ) |
| 177 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑌 × 𝑍 ) ∈ 𝐵 ) |
| 178 | 1 6 23 5 4 176 177 20 | psrmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 179 | 172 175 178 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) ) |
| 180 | 14 18 179 | eqfnfvd | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) ) |