This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsumbagdiag . (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | ||
| gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
| Assertion | gsumbagdiaglem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∈ 𝑆 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumbagdiag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | gsumbagdiag.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | |
| 3 | gsumbagdiag.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
| 4 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) | |
| 5 | breq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) | |
| 6 | 5 | elrab | ⊢ ( 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) |
| 7 | 4 6 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ 𝐷 ) |
| 9 | 7 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 ∈ 𝐷 ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ 𝑆 ) | |
| 12 | breq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹 ) ) | |
| 13 | 12 2 | elrab2 | ⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 14 | 11 13 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 15 | 14 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ 𝐷 ) |
| 16 | 1 | psrbagf | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 18 | 14 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∘r ≤ 𝐹 ) |
| 19 | 1 | psrbagcon | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 : 𝐼 ⟶ ℕ0 ∧ 𝑋 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 20 | 10 17 18 19 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 21 | 20 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) |
| 22 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 23 | 10 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 24 | 23 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 Fn 𝐼 ) |
| 25 | 10 24 | fndmexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐼 ∈ V ) |
| 26 | 1 | psrbagf | ⊢ ( 𝑌 ∈ 𝐷 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 27 | 8 26 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 28 | 20 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ) |
| 29 | 1 | psrbagf | ⊢ ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 → ( 𝐹 ∘f − 𝑋 ) : 𝐼 ⟶ ℕ0 ) |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) : 𝐼 ⟶ ℕ0 ) |
| 31 | nn0re | ⊢ ( 𝑢 ∈ ℕ0 → 𝑢 ∈ ℝ ) | |
| 32 | nn0re | ⊢ ( 𝑣 ∈ ℕ0 → 𝑣 ∈ ℝ ) | |
| 33 | nn0re | ⊢ ( 𝑤 ∈ ℕ0 → 𝑤 ∈ ℝ ) | |
| 34 | letr | ⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) | |
| 35 | 31 32 33 34 | syl3an | ⊢ ( ( 𝑢 ∈ ℕ0 ∧ 𝑣 ∈ ℕ0 ∧ 𝑤 ∈ ℕ0 ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ ( 𝑢 ∈ ℕ0 ∧ 𝑣 ∈ ℕ0 ∧ 𝑤 ∈ ℕ0 ) ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) |
| 37 | 25 27 30 23 36 | caoftrn | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) → 𝑌 ∘r ≤ 𝐹 ) ) |
| 38 | 9 21 37 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∘r ≤ 𝐹 ) |
| 39 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑌 ∘r ≤ 𝐹 ) ) | |
| 40 | 39 2 | elrab2 | ⊢ ( 𝑌 ∈ 𝑆 ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ 𝐹 ) ) |
| 41 | 8 38 40 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ 𝑆 ) |
| 42 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ↔ 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) ) | |
| 43 | 17 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 44 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 45 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) |
| 46 | nn0re | ⊢ ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑋 ‘ 𝑧 ) ∈ ℝ ) | |
| 47 | nn0re | ⊢ ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑌 ‘ 𝑧 ) ∈ ℝ ) | |
| 48 | nn0re | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) | |
| 49 | leaddsub2 | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) | |
| 50 | leaddsub | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) | |
| 51 | 49 50 | bitr3d | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 52 | 46 47 48 51 | syl3an | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 53 | 43 44 45 52 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 54 | 53 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ∀ 𝑧 ∈ 𝐼 ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 55 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V ) | |
| 56 | 27 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 57 | 17 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 Fn 𝐼 ) |
| 58 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 59 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 60 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ 𝑧 ) ) | |
| 61 | 24 57 25 25 58 59 60 | offval | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 62 | 25 44 55 56 61 | ofrfval2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 63 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ∈ V ) | |
| 64 | 17 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 65 | 27 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 Fn 𝐼 ) |
| 66 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) = ( 𝑌 ‘ 𝑧 ) ) | |
| 67 | 24 65 25 25 58 59 66 | offval | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 68 | 25 43 63 64 67 | ofrfval2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 69 | 54 62 68 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) ) |
| 70 | 9 69 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) |
| 71 | 42 15 70 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) } ) |
| 72 | 41 71 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∈ 𝑆 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) } ) ) |