This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem4.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnunilem4.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnunilem4.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnunilem4.w1 | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | ||
| psgnunilem4.w2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | ||
| Assertion | psgnunilem4 | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem4.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnunilem4.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnunilem4.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 4 | psgnunilem4.w1 | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | |
| 5 | psgnunilem4.w2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | |
| 6 | wrdfin | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Fin ) | |
| 7 | hashcl | ⊢ ( 𝑊 ∈ Fin → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | 8 9 | eleqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | fveq2 | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) | |
| 12 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑤 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ 0 ) ) |
| 15 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 16 | exp0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) | |
| 17 | 15 16 | ax-mp | ⊢ ( - 1 ↑ 0 ) = 1 |
| 18 | 14 17 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) |
| 19 | 18 | 2a1d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 ∧ ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 20 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → 𝜑 ) | |
| 21 | 20 3 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → 𝐷 ∈ 𝑉 ) |
| 22 | simpl3l | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ∈ Word 𝑇 ) | |
| 23 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑤 ) ) | |
| 24 | wrdfin | ⊢ ( 𝑤 ∈ Word 𝑇 → 𝑤 ∈ Fin ) | |
| 25 | 22 24 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ∈ Fin ) |
| 26 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ≠ ∅ ) | |
| 27 | hashnncl | ⊢ ( 𝑤 ∈ Fin → ( ( ♯ ‘ 𝑤 ) ∈ ℕ ↔ 𝑤 ≠ ∅ ) ) | |
| 28 | 27 | biimpar | ⊢ ( ( 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅ ) → ( ♯ ‘ 𝑤 ) ∈ ℕ ) |
| 29 | 25 26 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ ) |
| 30 | simpl3r | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) | |
| 31 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ↔ ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ) ) | |
| 32 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg 𝑦 ) ) | |
| 33 | 32 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 34 | 31 33 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) ) |
| 35 | 34 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 36 | 35 | notbii | ⊢ ( ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 37 | 36 | biimpi | ⊢ ( ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 39 | 1 2 21 22 23 29 30 38 | psgnunilem3 | ⊢ ¬ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 40 | iman | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ↔ ¬ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) | |
| 41 | 39 40 | mpbir | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 42 | df-rex | ⊢ ( ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) | |
| 43 | 41 42 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) |
| 44 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → 𝑥 ∈ Word 𝑇 ) | |
| 45 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) | |
| 46 | 44 45 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 47 | wrdfin | ⊢ ( 𝑥 ∈ Word 𝑇 → 𝑥 ∈ Fin ) | |
| 48 | hashcl | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) | |
| 49 | 44 47 48 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 50 | simp3l | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ∈ Word 𝑇 ) | |
| 51 | 50 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ∈ Fin ) |
| 52 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → 𝑤 ≠ ∅ ) | |
| 53 | 51 52 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ ) |
| 55 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ) | |
| 56 | 54 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℝ ) |
| 57 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 58 | ltsubrp | ⊢ ( ( ( ♯ ‘ 𝑤 ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( ♯ ‘ 𝑤 ) − 2 ) < ( ♯ ‘ 𝑤 ) ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( ♯ ‘ 𝑤 ) − 2 ) < ( ♯ ‘ 𝑤 ) ) |
| 60 | 55 59 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑥 ) < ( ♯ ‘ 𝑤 ) ) |
| 61 | elfzo0 | ⊢ ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↔ ( ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑤 ) ∈ ℕ ∧ ( ♯ ‘ 𝑥 ) < ( ♯ ‘ 𝑤 ) ) ) | |
| 62 | 49 54 60 61 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ) |
| 63 | id | ⊢ ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) | |
| 64 | 63 | com13 | ⊢ ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) |
| 65 | 46 62 64 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) |
| 66 | 55 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑤 ) − 2 ) ) ) |
| 67 | 15 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → - 1 ∈ ℂ ) |
| 68 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 69 | 68 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → - 1 ≠ 0 ) |
| 70 | 2z | ⊢ 2 ∈ ℤ | |
| 71 | 70 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → 2 ∈ ℤ ) |
| 72 | 54 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℤ ) |
| 73 | 67 69 71 72 | expsubd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑤 ) − 2 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) / ( - 1 ↑ 2 ) ) ) |
| 74 | neg1sqe1 | ⊢ ( - 1 ↑ 2 ) = 1 | |
| 75 | 74 | oveq2i | ⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) / ( - 1 ↑ 2 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) / 1 ) |
| 76 | m1expcl | ⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ ℤ ) | |
| 77 | 76 | zcnd | ⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ ℂ ) |
| 78 | 72 77 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ ℂ ) |
| 79 | 78 | div1d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) / 1 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 80 | 75 79 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) / ( - 1 ↑ 2 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 81 | 66 73 80 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 82 | 81 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) |
| 83 | 65 82 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) → ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) |
| 84 | 83 | ex | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 85 | 84 | com23 | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 86 | 85 | alimdv | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 87 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) | |
| 88 | 86 87 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ Word 𝑇 ∧ ( ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑤 ) − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 89 | 43 88 | mpid | ⊢ ( ( 𝜑 ∧ 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ) → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) |
| 90 | 89 | 3exp | ⊢ ( 𝜑 → ( 𝑤 ≠ ∅ → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) ) |
| 91 | 90 | com34 | ⊢ ( 𝜑 → ( 𝑤 ≠ ∅ → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) ) |
| 92 | 91 | com12 | ⊢ ( 𝑤 ≠ ∅ → ( 𝜑 → ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) ) |
| 93 | 92 | impd | ⊢ ( 𝑤 ≠ ∅ → ( ( 𝜑 ∧ ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) ) |
| 94 | 19 93 | pm2.61ine | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) |
| 95 | 94 | 3adant2 | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑤 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑥 ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ) |
| 96 | eleq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ Word 𝑇 ↔ 𝑥 ∈ Word 𝑇 ) ) | |
| 97 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) | |
| 98 | 97 | eqeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 99 | 96 98 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ↔ ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) ) |
| 100 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑥 ) ) | |
| 101 | 100 | oveq2d | ⊢ ( 𝑤 = 𝑥 → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 102 | 101 | eqeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ↔ ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) |
| 103 | 99 102 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ↔ ( ( 𝑥 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = 1 ) ) ) |
| 104 | eleq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ∈ Word 𝑇 ↔ 𝑊 ∈ Word 𝑇 ) ) | |
| 105 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) | |
| 106 | 105 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) ) |
| 107 | 104 106 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) ↔ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) ) ) |
| 108 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 109 | 108 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) |
| 110 | 109 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ↔ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = 1 ) ) |
| 111 | 107 110 | imbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = 1 ) ↔ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = 1 ) ) ) |
| 112 | 4 10 95 103 111 100 108 | uzindi | ⊢ ( 𝜑 → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = 1 ) ) |
| 113 | 4 5 112 | mp2and | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = 1 ) |