This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of Stoll p. 176. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 30-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iman | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb | ⊢ ( 𝜓 ↔ ¬ ¬ 𝜓 ) | |
| 2 | 1 | imbi2i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ¬ ¬ 𝜓 ) ) |
| 3 | imnan | ⊢ ( ( 𝜑 → ¬ ¬ 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |