This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expaddsub | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ ( 𝑋 − 𝑌 ) ) = ( - 1 ↑ ( 𝑋 + 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1expcl | ⊢ ( 𝑋 ∈ ℤ → ( - 1 ↑ 𝑋 ) ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( 𝑋 ∈ ℤ → ( - 1 ↑ 𝑋 ) ∈ ℂ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ 𝑋 ) ∈ ℂ ) |
| 4 | m1expcl | ⊢ ( 𝑌 ∈ ℤ → ( - 1 ↑ 𝑌 ) ∈ ℤ ) | |
| 5 | 4 | zcnd | ⊢ ( 𝑌 ∈ ℤ → ( - 1 ↑ 𝑌 ) ∈ ℂ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ 𝑌 ) ∈ ℂ ) |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 9 | expne0i | ⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ 𝑌 ) ≠ 0 ) | |
| 10 | 7 8 9 | mp3an12 | ⊢ ( 𝑌 ∈ ℤ → ( - 1 ↑ 𝑌 ) ≠ 0 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ 𝑌 ) ≠ 0 ) |
| 12 | 3 6 11 | divrecd | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( ( - 1 ↑ 𝑋 ) / ( - 1 ↑ 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) · ( 1 / ( - 1 ↑ 𝑌 ) ) ) ) |
| 13 | m1expcl2 | ⊢ ( 𝑌 ∈ ℤ → ( - 1 ↑ 𝑌 ) ∈ { - 1 , 1 } ) | |
| 14 | elpri | ⊢ ( ( - 1 ↑ 𝑌 ) ∈ { - 1 , 1 } → ( ( - 1 ↑ 𝑌 ) = - 1 ∨ ( - 1 ↑ 𝑌 ) = 1 ) ) | |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 17 | divneg2 | ⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) | |
| 18 | 15 15 16 17 | mp3an | ⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 19 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 20 | 19 | negeqi | ⊢ - ( 1 / 1 ) = - 1 |
| 21 | 18 20 | eqtr3i | ⊢ ( 1 / - 1 ) = - 1 |
| 22 | oveq2 | ⊢ ( ( - 1 ↑ 𝑌 ) = - 1 → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( 1 / - 1 ) ) | |
| 23 | id | ⊢ ( ( - 1 ↑ 𝑌 ) = - 1 → ( - 1 ↑ 𝑌 ) = - 1 ) | |
| 24 | 21 22 23 | 3eqtr4a | ⊢ ( ( - 1 ↑ 𝑌 ) = - 1 → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( - 1 ↑ 𝑌 ) ) |
| 25 | oveq2 | ⊢ ( ( - 1 ↑ 𝑌 ) = 1 → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( 1 / 1 ) ) | |
| 26 | id | ⊢ ( ( - 1 ↑ 𝑌 ) = 1 → ( - 1 ↑ 𝑌 ) = 1 ) | |
| 27 | 19 25 26 | 3eqtr4a | ⊢ ( ( - 1 ↑ 𝑌 ) = 1 → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( - 1 ↑ 𝑌 ) ) |
| 28 | 24 27 | jaoi | ⊢ ( ( ( - 1 ↑ 𝑌 ) = - 1 ∨ ( - 1 ↑ 𝑌 ) = 1 ) → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( - 1 ↑ 𝑌 ) ) |
| 29 | 13 14 28 | 3syl | ⊢ ( 𝑌 ∈ ℤ → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( - 1 ↑ 𝑌 ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( 1 / ( - 1 ↑ 𝑌 ) ) = ( - 1 ↑ 𝑌 ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( ( - 1 ↑ 𝑋 ) · ( 1 / ( - 1 ↑ 𝑌 ) ) ) = ( ( - 1 ↑ 𝑋 ) · ( - 1 ↑ 𝑌 ) ) ) |
| 32 | 12 31 | eqtrd | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( ( - 1 ↑ 𝑋 ) / ( - 1 ↑ 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) · ( - 1 ↑ 𝑌 ) ) ) |
| 33 | expsub | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( - 1 ↑ ( 𝑋 − 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) / ( - 1 ↑ 𝑌 ) ) ) | |
| 34 | 7 8 33 | mpanl12 | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ ( 𝑋 − 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) / ( - 1 ↑ 𝑌 ) ) ) |
| 35 | expaddz | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( - 1 ↑ ( 𝑋 + 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) · ( - 1 ↑ 𝑌 ) ) ) | |
| 36 | 7 8 35 | mpanl12 | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ ( 𝑋 + 𝑌 ) ) = ( ( - 1 ↑ 𝑋 ) · ( - 1 ↑ 𝑌 ) ) ) |
| 37 | 32 34 36 | 3eqtr4d | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( - 1 ↑ ( 𝑋 − 𝑌 ) ) = ( - 1 ↑ ( 𝑋 + 𝑌 ) ) ) |