This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzindi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| uzindi.b | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐿 ) ) | ||
| uzindi.c | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) → 𝜓 ) | ||
| uzindi.d | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | ||
| uzindi.e | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | ||
| uzindi.f | ⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) | ||
| uzindi.g | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) | ||
| Assertion | uzindi | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzindi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | uzindi.b | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐿 ) ) | |
| 3 | uzindi.c | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) → 𝜓 ) | |
| 4 | uzindi.d | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | uzindi.e | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 6 | uzindi.f | ⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) | |
| 7 | uzindi.g | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) | |
| 8 | eluzfz2 | ⊢ ( 𝑇 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝑇 ∈ ( 𝐿 ... 𝑇 ) ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝐿 ... 𝑇 ) ) |
| 10 | fzofi | ⊢ ( 𝐿 ..^ 𝑇 ) ∈ Fin | |
| 11 | finnum | ⊢ ( ( 𝐿 ..^ 𝑇 ) ∈ Fin → ( 𝐿 ..^ 𝑇 ) ∈ dom card ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝜑 → ( 𝐿 ..^ 𝑇 ) ∈ dom card ) |
| 13 | simpll | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → 𝜑 ) | |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) | |
| 15 | elfzuz3 | ⊢ ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → 𝑇 ∈ ( ℤ≥ ‘ 𝑅 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → 𝑇 ∈ ( ℤ≥ ‘ 𝑅 ) ) |
| 17 | fzoss2 | ⊢ ( 𝑇 ∈ ( ℤ≥ ‘ 𝑅 ) → ( 𝐿 ..^ 𝑅 ) ⊆ ( 𝐿 ..^ 𝑇 ) ) | |
| 18 | fzossfz | ⊢ ( 𝐿 ..^ 𝑇 ) ⊆ ( 𝐿 ... 𝑇 ) | |
| 19 | 17 18 | sstrdi | ⊢ ( 𝑇 ∈ ( ℤ≥ ‘ 𝑅 ) → ( 𝐿 ..^ 𝑅 ) ⊆ ( 𝐿 ... 𝑇 ) ) |
| 20 | 16 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → ( 𝐿 ..^ 𝑅 ) ⊆ ( 𝐿 ... 𝑇 ) ) |
| 21 | 20 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → 𝑆 ∈ ( 𝐿 ... 𝑇 ) ) |
| 22 | fzofi | ⊢ ( 𝐿 ..^ 𝑅 ) ∈ Fin | |
| 23 | elfzofz | ⊢ ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝑆 ∈ ( 𝐿 ... 𝑅 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → 𝑆 ∈ ( 𝐿 ... 𝑅 ) ) |
| 25 | elfzuz3 | ⊢ ( 𝑆 ∈ ( 𝐿 ... 𝑅 ) → 𝑅 ∈ ( ℤ≥ ‘ 𝑆 ) ) | |
| 26 | fzoss2 | ⊢ ( 𝑅 ∈ ( ℤ≥ ‘ 𝑆 ) → ( 𝐿 ..^ 𝑆 ) ⊆ ( 𝐿 ..^ 𝑅 ) ) | |
| 27 | 24 25 26 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → ( 𝐿 ..^ 𝑆 ) ⊆ ( 𝐿 ..^ 𝑅 ) ) |
| 28 | fzonel | ⊢ ¬ 𝑆 ∈ ( 𝐿 ..^ 𝑆 ) | |
| 29 | 28 | jctr | ⊢ ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ∧ ¬ 𝑆 ∈ ( 𝐿 ..^ 𝑆 ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ∧ ¬ 𝑆 ∈ ( 𝐿 ..^ 𝑆 ) ) ) |
| 31 | ssnelpss | ⊢ ( ( 𝐿 ..^ 𝑆 ) ⊆ ( 𝐿 ..^ 𝑅 ) → ( ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ∧ ¬ 𝑆 ∈ ( 𝐿 ..^ 𝑆 ) ) → ( 𝐿 ..^ 𝑆 ) ⊊ ( 𝐿 ..^ 𝑅 ) ) ) | |
| 32 | 27 30 31 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → ( 𝐿 ..^ 𝑆 ) ⊊ ( 𝐿 ..^ 𝑅 ) ) |
| 33 | php3 | ⊢ ( ( ( 𝐿 ..^ 𝑅 ) ∈ Fin ∧ ( 𝐿 ..^ 𝑆 ) ⊊ ( 𝐿 ..^ 𝑅 ) ) → ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) ) | |
| 34 | 22 32 33 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) ) |
| 35 | id | ⊢ ( ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) | |
| 36 | 35 | com13 | ⊢ ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → 𝜒 ) ) ) |
| 37 | 21 34 36 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) ∧ 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) ) → ( ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → 𝜒 ) ) |
| 38 | 37 | ex | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → ( ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → 𝜒 ) ) ) |
| 39 | 38 | com23 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → ( ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) ) |
| 40 | 39 | alimdv | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → ( ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) ) |
| 41 | 40 | ex | ⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → ( ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) ) ) |
| 42 | 41 | com23 | ⊢ ( 𝜑 → ( ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) ) ) |
| 43 | 42 | imp31 | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → ∀ 𝑦 ( 𝑆 ∈ ( 𝐿 ..^ 𝑅 ) → 𝜒 ) ) |
| 44 | 13 14 43 3 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 ∈ ( 𝐿 ... 𝑇 ) ) → 𝜓 ) |
| 45 | 44 | ex | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → 𝜓 ) ) |
| 46 | 45 | 3adant2 | ⊢ ( ( 𝜑 ∧ ( 𝐿 ..^ 𝑅 ) ≼ ( 𝐿 ..^ 𝑇 ) ∧ ∀ 𝑦 ( ( 𝐿 ..^ 𝑆 ) ≺ ( 𝐿 ..^ 𝑅 ) → ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → 𝜓 ) ) |
| 47 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) ↔ 𝑆 ∈ ( 𝐿 ... 𝑇 ) ) ) |
| 48 | 47 4 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → 𝜓 ) ↔ ( 𝑆 ∈ ( 𝐿 ... 𝑇 ) → 𝜒 ) ) ) |
| 49 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) ↔ 𝑇 ∈ ( 𝐿 ... 𝑇 ) ) ) |
| 50 | 49 5 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ ( 𝐿 ... 𝑇 ) → 𝜓 ) ↔ ( 𝑇 ∈ ( 𝐿 ... 𝑇 ) → 𝜃 ) ) ) |
| 51 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐿 ..^ 𝑅 ) = ( 𝐿 ..^ 𝑆 ) ) |
| 52 | 7 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐿 ..^ 𝑅 ) = ( 𝐿 ..^ 𝑇 ) ) |
| 53 | 1 12 46 48 50 51 52 | indcardi | ⊢ ( 𝜑 → ( 𝑇 ∈ ( 𝐿 ... 𝑇 ) → 𝜃 ) ) |
| 54 | 9 53 | mpd | ⊢ ( 𝜑 → 𝜃 ) |