This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem4.g | |- G = ( SymGrp ` D ) |
|
| psgnunilem4.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnunilem4.d | |- ( ph -> D e. V ) |
||
| psgnunilem4.w1 | |- ( ph -> W e. Word T ) |
||
| psgnunilem4.w2 | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
||
| Assertion | psgnunilem4 | |- ( ph -> ( -u 1 ^ ( # ` W ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem4.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnunilem4.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnunilem4.d | |- ( ph -> D e. V ) |
|
| 4 | psgnunilem4.w1 | |- ( ph -> W e. Word T ) |
|
| 5 | psgnunilem4.w2 | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
|
| 6 | wrdfin | |- ( W e. Word T -> W e. Fin ) |
|
| 7 | hashcl | |- ( W e. Fin -> ( # ` W ) e. NN0 ) |
|
| 8 | 4 6 7 | 3syl | |- ( ph -> ( # ` W ) e. NN0 ) |
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | 8 9 | eleqtrdi | |- ( ph -> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
| 11 | fveq2 | |- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
|
| 12 | hash0 | |- ( # ` (/) ) = 0 |
|
| 13 | 11 12 | eqtrdi | |- ( w = (/) -> ( # ` w ) = 0 ) |
| 14 | 13 | oveq2d | |- ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ 0 ) ) |
| 15 | neg1cn | |- -u 1 e. CC |
|
| 16 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 17 | 15 16 | ax-mp | |- ( -u 1 ^ 0 ) = 1 |
| 18 | 14 17 | eqtrdi | |- ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = 1 ) |
| 19 | 18 | 2a1d | |- ( w = (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 20 | simpl1 | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ph ) |
|
| 21 | 20 3 | syl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> D e. V ) |
| 22 | simpl3l | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Word T ) |
|
| 23 | eqidd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) = ( # ` w ) ) |
|
| 24 | wrdfin | |- ( w e. Word T -> w e. Fin ) |
|
| 25 | 22 24 | syl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Fin ) |
| 26 | simpl2 | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w =/= (/) ) |
|
| 27 | hashnncl | |- ( w e. Fin -> ( ( # ` w ) e. NN <-> w =/= (/) ) ) |
|
| 28 | 27 | biimpar | |- ( ( w e. Fin /\ w =/= (/) ) -> ( # ` w ) e. NN ) |
| 29 | 25 26 28 | syl2anc | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) |
| 30 | simpl3r | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( G gsum w ) = ( _I |` D ) ) |
|
| 31 | fveqeq2 | |- ( x = y -> ( ( # ` x ) = ( ( # ` w ) - 2 ) <-> ( # ` y ) = ( ( # ` w ) - 2 ) ) ) |
|
| 32 | oveq2 | |- ( x = y -> ( G gsum x ) = ( G gsum y ) ) |
|
| 33 | 32 | eqeq1d | |- ( x = y -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum y ) = ( _I |` D ) ) ) |
| 34 | 31 33 | anbi12d | |- ( x = y -> ( ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) ) |
| 35 | 34 | cbvrexvw | |- ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 36 | 35 | notbii | |- ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 37 | 36 | biimpi | |- ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 38 | 37 | adantl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 39 | 1 2 21 22 23 29 30 38 | psgnunilem3 | |- -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 40 | iman | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) <-> -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
|
| 41 | 39 40 | mpbir | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 42 | df-rex | |- ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
|
| 43 | 41 42 | sylib | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 44 | simprl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> x e. Word T ) |
|
| 45 | simprrr | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( G gsum x ) = ( _I |` D ) ) |
|
| 46 | 44 45 | jca | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 47 | wrdfin | |- ( x e. Word T -> x e. Fin ) |
|
| 48 | hashcl | |- ( x e. Fin -> ( # ` x ) e. NN0 ) |
|
| 49 | 44 47 48 | 3syl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. NN0 ) |
| 50 | simp3l | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Word T ) |
|
| 51 | 50 24 | syl | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Fin ) |
| 52 | simp2 | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w =/= (/) ) |
|
| 53 | 51 52 28 | syl2anc | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. NN ) |
| 55 | simprrl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) = ( ( # ` w ) - 2 ) ) |
|
| 56 | 54 | nnred | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. RR ) |
| 57 | 2rp | |- 2 e. RR+ |
|
| 58 | ltsubrp | |- ( ( ( # ` w ) e. RR /\ 2 e. RR+ ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) |
|
| 59 | 56 57 58 | sylancl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) |
| 60 | 55 59 | eqbrtrd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) < ( # ` w ) ) |
| 61 | elfzo0 | |- ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) <-> ( ( # ` x ) e. NN0 /\ ( # ` w ) e. NN /\ ( # ` x ) < ( # ` w ) ) ) |
|
| 62 | 49 54 60 61 | syl3anbrc | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. ( 0 ..^ ( # ` w ) ) ) |
| 63 | id | |- ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
|
| 64 | 63 | com13 | |- ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
| 65 | 46 62 64 | sylc | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) |
| 66 | 55 | oveq2d | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( ( # ` w ) - 2 ) ) ) |
| 67 | 15 | a1i | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 e. CC ) |
| 68 | neg1ne0 | |- -u 1 =/= 0 |
|
| 69 | 68 | a1i | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 =/= 0 ) |
| 70 | 2z | |- 2 e. ZZ |
|
| 71 | 70 | a1i | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> 2 e. ZZ ) |
| 72 | 54 | nnzd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. ZZ ) |
| 73 | 67 69 71 72 | expsubd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( ( # ` w ) - 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) ) |
| 74 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
| 75 | 74 | oveq2i | |- ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / 1 ) |
| 76 | m1expcl | |- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. ZZ ) |
|
| 77 | 76 | zcnd | |- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. CC ) |
| 78 | 72 77 | syl | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) e. CC ) |
| 79 | 78 | div1d | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / 1 ) = ( -u 1 ^ ( # ` w ) ) ) |
| 80 | 75 79 | eqtrid | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( -u 1 ^ ( # ` w ) ) ) |
| 81 | 66 73 80 | 3eqtrd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( # ` w ) ) ) |
| 82 | 81 | eqeq1d | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` x ) ) = 1 <-> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 83 | 65 82 | sylibd | |- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 84 | 83 | ex | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 85 | 84 | com23 | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 86 | 85 | alimdv | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 87 | 19.23v | |- ( A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
|
| 88 | 86 87 | imbitrdi | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 89 | 43 88 | mpid | |- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 90 | 89 | 3exp | |- ( ph -> ( w =/= (/) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 91 | 90 | com34 | |- ( ph -> ( w =/= (/) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 92 | 91 | com12 | |- ( w =/= (/) -> ( ph -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 93 | 92 | impd | |- ( w =/= (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 94 | 19 93 | pm2.61ine | |- ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 95 | 94 | 3adant2 | |- ( ( ph /\ ( # ` w ) e. ( 0 ... ( # ` W ) ) /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 96 | eleq1 | |- ( w = x -> ( w e. Word T <-> x e. Word T ) ) |
|
| 97 | oveq2 | |- ( w = x -> ( G gsum w ) = ( G gsum x ) ) |
|
| 98 | 97 | eqeq1d | |- ( w = x -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum x ) = ( _I |` D ) ) ) |
| 99 | 96 98 | anbi12d | |- ( w = x -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 100 | fveq2 | |- ( w = x -> ( # ` w ) = ( # ` x ) ) |
|
| 101 | 100 | oveq2d | |- ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
| 102 | 101 | eqeq1d | |- ( w = x -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` x ) ) = 1 ) ) |
| 103 | 99 102 | imbi12d | |- ( w = x -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
| 104 | eleq1 | |- ( w = W -> ( w e. Word T <-> W e. Word T ) ) |
|
| 105 | oveq2 | |- ( w = W -> ( G gsum w ) = ( G gsum W ) ) |
|
| 106 | 105 | eqeq1d | |- ( w = W -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum W ) = ( _I |` D ) ) ) |
| 107 | 104 106 | anbi12d | |- ( w = W -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) ) ) |
| 108 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 109 | 108 | oveq2d | |- ( w = W -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` W ) ) ) |
| 110 | 109 | eqeq1d | |- ( w = W -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` W ) ) = 1 ) ) |
| 111 | 107 110 | imbi12d | |- ( w = W -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) ) |
| 112 | 4 10 95 103 111 100 108 | uzindi | |- ( ph -> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) |
| 113 | 4 5 112 | mp2and | |- ( ph -> ( -u 1 ^ ( # ` W ) ) = 1 ) |