This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnghm.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| psgnghm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| psgnghm.f | ⊢ 𝐹 = ( 𝑆 ↾s dom 𝑁 ) | ||
| psgnghm.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | ||
| Assertion | psgnghm | ⊢ ( 𝐷 ∈ 𝑉 → 𝑁 ∈ ( 𝐹 GrpHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnghm.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnghm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | psgnghm.f | ⊢ 𝐹 = ( 𝑆 ↾s dom 𝑁 ) | |
| 4 | psgnghm.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | eqid | ⊢ { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } | |
| 7 | 1 5 6 2 | psgnfn | ⊢ 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 8 | 7 | fndmi | ⊢ dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 9 | 8 | ssrab3 | ⊢ dom 𝑁 ⊆ ( Base ‘ 𝑆 ) |
| 10 | 3 5 | ressbas2 | ⊢ ( dom 𝑁 ⊆ ( Base ‘ 𝑆 ) → dom 𝑁 = ( Base ‘ 𝐹 ) ) |
| 11 | 9 10 | ax-mp | ⊢ dom 𝑁 = ( Base ‘ 𝐹 ) |
| 12 | 4 | cnmsgnbas | ⊢ { 1 , - 1 } = ( Base ‘ 𝑈 ) |
| 13 | 11 | fvexi | ⊢ dom 𝑁 ∈ V |
| 14 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 15 | 3 14 | ressplusg | ⊢ ( dom 𝑁 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝐹 ) ) |
| 16 | 13 15 | ax-mp | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝐹 ) |
| 17 | prex | ⊢ { 1 , - 1 } ∈ V | |
| 18 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 19 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 20 | 18 19 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 21 | 4 20 | ressplusg | ⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ 𝑈 ) ) |
| 22 | 17 21 | ax-mp | ⊢ · = ( +g ‘ 𝑈 ) |
| 23 | 1 2 | psgndmsubg | ⊢ ( 𝐷 ∈ 𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 24 | 3 | subggrp | ⊢ ( dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) → 𝐹 ∈ Grp ) |
| 25 | 23 24 | syl | ⊢ ( 𝐷 ∈ 𝑉 → 𝐹 ∈ Grp ) |
| 26 | 4 | cnmsgngrp | ⊢ 𝑈 ∈ Grp |
| 27 | 26 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → 𝑈 ∈ Grp ) |
| 28 | fnfun | ⊢ ( 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } → Fun 𝑁 ) | |
| 29 | 7 28 | ax-mp | ⊢ Fun 𝑁 |
| 30 | funfn | ⊢ ( Fun 𝑁 ↔ 𝑁 Fn dom 𝑁 ) | |
| 31 | 29 30 | mpbi | ⊢ 𝑁 Fn dom 𝑁 |
| 32 | 31 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → 𝑁 Fn dom 𝑁 ) |
| 33 | eqid | ⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) | |
| 34 | 1 33 2 | psgnvali | ⊢ ( 𝑥 ∈ dom 𝑁 → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ) |
| 35 | lencl | ⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) | |
| 36 | 35 | nn0zd | ⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℤ ) |
| 37 | m1expcl2 | ⊢ ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { - 1 , 1 } ) | |
| 38 | prcom | ⊢ { - 1 , 1 } = { 1 , - 1 } | |
| 39 | 37 38 | eleqtrdi | ⊢ ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } ) |
| 40 | eleq1a | ⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } → ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) | |
| 41 | 36 39 40 | 3syl | ⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
| 42 | 41 | adantld | ⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
| 43 | 42 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) |
| 44 | 43 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
| 45 | 34 44 | syl5 | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑥 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
| 46 | 45 | ralrimiv | ⊢ ( 𝐷 ∈ 𝑉 → ∀ 𝑥 ∈ dom 𝑁 ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) |
| 47 | ffnfv | ⊢ ( 𝑁 : dom 𝑁 ⟶ { 1 , - 1 } ↔ ( 𝑁 Fn dom 𝑁 ∧ ∀ 𝑥 ∈ dom 𝑁 ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) | |
| 48 | 32 46 47 | sylanbrc | ⊢ ( 𝐷 ∈ 𝑉 → 𝑁 : dom 𝑁 ⟶ { 1 , - 1 } ) |
| 49 | ccatcl | ⊢ ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) | |
| 50 | 1 33 2 | psgnvalii | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) ) |
| 51 | 49 50 | sylan2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) ) |
| 52 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝑆 ∈ Grp ) |
| 53 | 52 | grpmndd | ⊢ ( 𝐷 ∈ 𝑉 → 𝑆 ∈ Mnd ) |
| 54 | 33 1 5 | symgtrf | ⊢ ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) |
| 55 | sswrd | ⊢ ( ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) → Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) ) | |
| 56 | 54 55 | ax-mp | ⊢ Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) |
| 57 | 56 | sseli | ⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑧 ∈ Word ( Base ‘ 𝑆 ) ) |
| 58 | 56 | sseli | ⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑤 ∈ Word ( Base ‘ 𝑆 ) ) |
| 59 | 5 14 | gsumccat | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑧 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑤 ∈ Word ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
| 60 | 53 57 58 59 | syl3an | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
| 61 | 60 | 3expb | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
| 62 | 61 | fveq2d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) ) |
| 63 | ccatlen | ⊢ ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) | |
| 64 | 63 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) |
| 65 | 64 | oveq2d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) ) |
| 66 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 67 | 66 | a1i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → - 1 ∈ ℂ ) |
| 68 | lencl | ⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) | |
| 69 | 68 | ad2antll | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
| 70 | 35 | ad2antrl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
| 71 | 67 69 70 | expaddd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 72 | 65 71 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 73 | 51 62 72 | 3eqtr3d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 74 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) | |
| 75 | 74 | fveq2d | ⊢ ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) ) |
| 76 | oveq12 | ⊢ ( ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 77 | 75 76 | eqeqan12d | ⊢ ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) ∧ ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 78 | 77 | an4s | ⊢ ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 79 | 73 78 | syl5ibrcom | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 80 | 79 | rexlimdvva | ⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 81 | 1 33 2 | psgnvali | ⊢ ( 𝑦 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 82 | 34 81 | anim12i | ⊢ ( ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 83 | reeanv | ⊢ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ↔ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | |
| 84 | 82 83 | sylibr | ⊢ ( ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 85 | 80 84 | impel | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 86 | 11 12 16 22 25 27 48 85 | isghmd | ⊢ ( 𝐷 ∈ 𝑉 → 𝑁 ∈ ( 𝐹 GrpHom 𝑈 ) ) |