This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgneldm.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgneldm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgndmsubg | ⊢ ( 𝐷 ∈ 𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgneldm.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgneldm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | eqid | ⊢ { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 5 | 1 3 4 2 | psgnfn | ⊢ 𝑁 Fn { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 6 | fndm | ⊢ ( 𝑁 Fn { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } → dom 𝑁 = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) | |
| 7 | 5 6 | ax-mp | ⊢ dom 𝑁 = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 8 | 1 3 | symgfisg | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 7 8 | eqeltrid | ⊢ ( 𝐷 ∈ 𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |