This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expcl2 | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negex | ⊢ - 1 ∈ V | |
| 2 | 1 | prid1 | ⊢ - 1 ∈ { - 1 , 1 } |
| 3 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | prssi | ⊢ ( ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ) → { - 1 , 1 } ⊆ ℂ ) | |
| 7 | 4 5 6 | mp2an | ⊢ { - 1 , 1 } ⊆ ℂ |
| 8 | elpri | ⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 𝑥 = - 1 ∨ 𝑥 = 1 ) ) | |
| 9 | 7 | sseli | ⊢ ( 𝑦 ∈ { - 1 , 1 } → 𝑦 ∈ ℂ ) |
| 10 | 9 | mulm1d | ⊢ ( 𝑦 ∈ { - 1 , 1 } → ( - 1 · 𝑦 ) = - 𝑦 ) |
| 11 | elpri | ⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 𝑦 = - 1 ∨ 𝑦 = 1 ) ) | |
| 12 | negeq | ⊢ ( 𝑦 = - 1 → - 𝑦 = - - 1 ) | |
| 13 | negneg1e1 | ⊢ - - 1 = 1 | |
| 14 | 1ex | ⊢ 1 ∈ V | |
| 15 | 14 | prid2 | ⊢ 1 ∈ { - 1 , 1 } |
| 16 | 13 15 | eqeltri | ⊢ - - 1 ∈ { - 1 , 1 } |
| 17 | 12 16 | eqeltrdi | ⊢ ( 𝑦 = - 1 → - 𝑦 ∈ { - 1 , 1 } ) |
| 18 | negeq | ⊢ ( 𝑦 = 1 → - 𝑦 = - 1 ) | |
| 19 | 18 2 | eqeltrdi | ⊢ ( 𝑦 = 1 → - 𝑦 ∈ { - 1 , 1 } ) |
| 20 | 17 19 | jaoi | ⊢ ( ( 𝑦 = - 1 ∨ 𝑦 = 1 ) → - 𝑦 ∈ { - 1 , 1 } ) |
| 21 | 11 20 | syl | ⊢ ( 𝑦 ∈ { - 1 , 1 } → - 𝑦 ∈ { - 1 , 1 } ) |
| 22 | 10 21 | eqeltrd | ⊢ ( 𝑦 ∈ { - 1 , 1 } → ( - 1 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 23 | oveq1 | ⊢ ( 𝑥 = - 1 → ( 𝑥 · 𝑦 ) = ( - 1 · 𝑦 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑥 = - 1 → ( ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ↔ ( - 1 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 25 | 22 24 | imbitrrid | ⊢ ( 𝑥 = - 1 → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 26 | 9 | mullidd | ⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 1 · 𝑦 ) = 𝑦 ) |
| 27 | id | ⊢ ( 𝑦 ∈ { - 1 , 1 } → 𝑦 ∈ { - 1 , 1 } ) | |
| 28 | 26 27 | eqeltrd | ⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 1 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 29 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑦 ) = ( 1 · 𝑦 ) ) | |
| 30 | 29 | eleq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ↔ ( 1 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 31 | 28 30 | imbitrrid | ⊢ ( 𝑥 = 1 → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 32 | 25 31 | jaoi | ⊢ ( ( 𝑥 = - 1 ∨ 𝑥 = 1 ) → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 33 | 8 32 | syl | ⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 34 | 33 | imp | ⊢ ( ( 𝑥 ∈ { - 1 , 1 } ∧ 𝑦 ∈ { - 1 , 1 } ) → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 35 | oveq2 | ⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) = ( 1 / - 1 ) ) | |
| 36 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 37 | divneg2 | ⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) | |
| 38 | 5 5 36 37 | mp3an | ⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 39 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 40 | 39 | negeqi | ⊢ - ( 1 / 1 ) = - 1 |
| 41 | 38 40 | eqtr3i | ⊢ ( 1 / - 1 ) = - 1 |
| 42 | 41 2 | eqeltri | ⊢ ( 1 / - 1 ) ∈ { - 1 , 1 } |
| 43 | 35 42 | eqeltrdi | ⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 44 | oveq2 | ⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) = ( 1 / 1 ) ) | |
| 45 | 39 15 | eqeltri | ⊢ ( 1 / 1 ) ∈ { - 1 , 1 } |
| 46 | 44 45 | eqeltrdi | ⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 47 | 43 46 | jaoi | ⊢ ( ( 𝑥 = - 1 ∨ 𝑥 = 1 ) → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 48 | 8 47 | syl | ⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 49 | 48 | adantr | ⊢ ( ( 𝑥 ∈ { - 1 , 1 } ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 50 | 7 34 15 49 | expcl2lem | ⊢ ( ( - 1 ∈ { - 1 , 1 } ∧ - 1 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) |
| 51 | 2 3 50 | mp3an12 | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) |