This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmsgngrp.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| Assertion | cnmsgngrp | ⊢ 𝑈 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgngrp.u | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 2 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 3 | 2 | cnmsgnsubg | ⊢ { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 4 | cnex | ⊢ ℂ ∈ V | |
| 5 | 4 | difexi | ⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 8 | eldifsn | ⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) | |
| 9 | 6 7 8 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 12 | eldifsn | ⊢ ( - 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) | |
| 13 | 10 11 12 | mpbir2an | ⊢ - 1 ∈ ( ℂ ∖ { 0 } ) |
| 14 | prssi | ⊢ ( ( 1 ∈ ( ℂ ∖ { 0 } ) ∧ - 1 ∈ ( ℂ ∖ { 0 } ) ) → { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) | |
| 15 | 9 13 14 | mp2an | ⊢ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) |
| 16 | ressabs | ⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 17 | 5 15 16 | mp2an | ⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 18 | 1 17 | eqtr4i | ⊢ 𝑈 = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) |
| 19 | 18 | subggrp | ⊢ ( { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → 𝑈 ∈ Grp ) |
| 20 | 3 19 | ax-mp | ⊢ 𝑈 ∈ Grp |