This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnvalii | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | 1 2 3 | psgneldm2i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |
| 5 | 1 2 3 | psgnval | ⊢ ( ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 → ( 𝑁 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 6 | 4 5 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 7 | simpr | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 ∈ Word 𝑇 ) | |
| 8 | eqidd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ) | |
| 9 | eqidd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ↔ ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | 13 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 16 | 15 | rspcev | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 17 | 7 8 9 16 | syl12anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 18 | ovexd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ V ) | |
| 19 | 1 2 3 | psgneu | ⊢ ( ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 20 | 4 19 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 21 | eqeq1 | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 22 | 21 | anbi2d | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 23 | 22 | rexbidv | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) → ( ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) → ( ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 25 | 18 20 24 | iota2d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) ) |
| 26 | 17 25 | mpbid | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) |
| 27 | 6 26 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) |