This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnvali | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | 1 2 3 | psgnval | ⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑃 ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 5 | 1 2 3 | psgneu | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 6 | iotacl | ⊢ ( ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∈ { 𝑠 ∣ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) } ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑃 ∈ dom 𝑁 → ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∈ { 𝑠 ∣ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) } ) |
| 8 | 4 7 | eqeltrd | ⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑃 ) ∈ { 𝑠 ∣ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) } ) |
| 9 | fvex | ⊢ ( 𝑁 ‘ 𝑃 ) ∈ V | |
| 10 | eqeq1 | ⊢ ( 𝑠 = ( 𝑁 ‘ 𝑃 ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑠 = ( 𝑁 ‘ 𝑃 ) → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑠 = ( 𝑁 ‘ 𝑃 ) → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 13 | 9 12 | elab | ⊢ ( ( 𝑁 ‘ 𝑃 ) ∈ { 𝑠 ∣ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) } ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 14 | 8 13 | sylib | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |