This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnghm.s | |- S = ( SymGrp ` D ) |
|
| psgnghm.n | |- N = ( pmSgn ` D ) |
||
| psgnghm.f | |- F = ( S |`s dom N ) |
||
| psgnghm.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
||
| Assertion | psgnghm | |- ( D e. V -> N e. ( F GrpHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnghm.s | |- S = ( SymGrp ` D ) |
|
| 2 | psgnghm.n | |- N = ( pmSgn ` D ) |
|
| 3 | psgnghm.f | |- F = ( S |`s dom N ) |
|
| 4 | psgnghm.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | eqid | |- { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
|
| 7 | 1 5 6 2 | psgnfn | |- N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 8 | 7 | fndmi | |- dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 9 | 8 | ssrab3 | |- dom N C_ ( Base ` S ) |
| 10 | 3 5 | ressbas2 | |- ( dom N C_ ( Base ` S ) -> dom N = ( Base ` F ) ) |
| 11 | 9 10 | ax-mp | |- dom N = ( Base ` F ) |
| 12 | 4 | cnmsgnbas | |- { 1 , -u 1 } = ( Base ` U ) |
| 13 | 11 | fvexi | |- dom N e. _V |
| 14 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 15 | 3 14 | ressplusg | |- ( dom N e. _V -> ( +g ` S ) = ( +g ` F ) ) |
| 16 | 13 15 | ax-mp | |- ( +g ` S ) = ( +g ` F ) |
| 17 | prex | |- { 1 , -u 1 } e. _V |
|
| 18 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 19 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 20 | 18 19 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 21 | 4 20 | ressplusg | |- ( { 1 , -u 1 } e. _V -> x. = ( +g ` U ) ) |
| 22 | 17 21 | ax-mp | |- x. = ( +g ` U ) |
| 23 | 1 2 | psgndmsubg | |- ( D e. V -> dom N e. ( SubGrp ` S ) ) |
| 24 | 3 | subggrp | |- ( dom N e. ( SubGrp ` S ) -> F e. Grp ) |
| 25 | 23 24 | syl | |- ( D e. V -> F e. Grp ) |
| 26 | 4 | cnmsgngrp | |- U e. Grp |
| 27 | 26 | a1i | |- ( D e. V -> U e. Grp ) |
| 28 | fnfun | |- ( N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } -> Fun N ) |
|
| 29 | 7 28 | ax-mp | |- Fun N |
| 30 | funfn | |- ( Fun N <-> N Fn dom N ) |
|
| 31 | 29 30 | mpbi | |- N Fn dom N |
| 32 | 31 | a1i | |- ( D e. V -> N Fn dom N ) |
| 33 | eqid | |- ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) |
|
| 34 | 1 33 2 | psgnvali | |- ( x e. dom N -> E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) ) |
| 35 | lencl | |- ( z e. Word ran ( pmTrsp ` D ) -> ( # ` z ) e. NN0 ) |
|
| 36 | 35 | nn0zd | |- ( z e. Word ran ( pmTrsp ` D ) -> ( # ` z ) e. ZZ ) |
| 37 | m1expcl2 | |- ( ( # ` z ) e. ZZ -> ( -u 1 ^ ( # ` z ) ) e. { -u 1 , 1 } ) |
|
| 38 | prcom | |- { -u 1 , 1 } = { 1 , -u 1 } |
|
| 39 | 37 38 | eleqtrdi | |- ( ( # ` z ) e. ZZ -> ( -u 1 ^ ( # ` z ) ) e. { 1 , -u 1 } ) |
| 40 | eleq1a | |- ( ( -u 1 ^ ( # ` z ) ) e. { 1 , -u 1 } -> ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
|
| 41 | 36 39 40 | 3syl | |- ( z e. Word ran ( pmTrsp ` D ) -> ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 42 | 41 | adantld | |- ( z e. Word ran ( pmTrsp ` D ) -> ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 43 | 42 | rexlimiv | |- ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) |
| 44 | 43 | a1i | |- ( D e. V -> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 45 | 34 44 | syl5 | |- ( D e. V -> ( x e. dom N -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 46 | 45 | ralrimiv | |- ( D e. V -> A. x e. dom N ( N ` x ) e. { 1 , -u 1 } ) |
| 47 | ffnfv | |- ( N : dom N --> { 1 , -u 1 } <-> ( N Fn dom N /\ A. x e. dom N ( N ` x ) e. { 1 , -u 1 } ) ) |
|
| 48 | 32 46 47 | sylanbrc | |- ( D e. V -> N : dom N --> { 1 , -u 1 } ) |
| 49 | ccatcl | |- ( ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( z ++ w ) e. Word ran ( pmTrsp ` D ) ) |
|
| 50 | 1 33 2 | psgnvalii | |- ( ( D e. V /\ ( z ++ w ) e. Word ran ( pmTrsp ` D ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( -u 1 ^ ( # ` ( z ++ w ) ) ) ) |
| 51 | 49 50 | sylan2 | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( -u 1 ^ ( # ` ( z ++ w ) ) ) ) |
| 52 | 1 | symggrp | |- ( D e. V -> S e. Grp ) |
| 53 | 52 | grpmndd | |- ( D e. V -> S e. Mnd ) |
| 54 | 33 1 5 | symgtrf | |- ran ( pmTrsp ` D ) C_ ( Base ` S ) |
| 55 | sswrd | |- ( ran ( pmTrsp ` D ) C_ ( Base ` S ) -> Word ran ( pmTrsp ` D ) C_ Word ( Base ` S ) ) |
|
| 56 | 54 55 | ax-mp | |- Word ran ( pmTrsp ` D ) C_ Word ( Base ` S ) |
| 57 | 56 | sseli | |- ( z e. Word ran ( pmTrsp ` D ) -> z e. Word ( Base ` S ) ) |
| 58 | 56 | sseli | |- ( w e. Word ran ( pmTrsp ` D ) -> w e. Word ( Base ` S ) ) |
| 59 | 5 14 | gsumccat | |- ( ( S e. Mnd /\ z e. Word ( Base ` S ) /\ w e. Word ( Base ` S ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 60 | 53 57 58 59 | syl3an | |- ( ( D e. V /\ z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 61 | 60 | 3expb | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 62 | 61 | fveq2d | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) ) |
| 63 | ccatlen | |- ( ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( # ` ( z ++ w ) ) = ( ( # ` z ) + ( # ` w ) ) ) |
|
| 64 | 63 | adantl | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` ( z ++ w ) ) = ( ( # ` z ) + ( # ` w ) ) ) |
| 65 | 64 | oveq2d | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( # ` ( z ++ w ) ) ) = ( -u 1 ^ ( ( # ` z ) + ( # ` w ) ) ) ) |
| 66 | neg1cn | |- -u 1 e. CC |
|
| 67 | 66 | a1i | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> -u 1 e. CC ) |
| 68 | lencl | |- ( w e. Word ran ( pmTrsp ` D ) -> ( # ` w ) e. NN0 ) |
|
| 69 | 68 | ad2antll | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` w ) e. NN0 ) |
| 70 | 35 | ad2antrl | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` z ) e. NN0 ) |
| 71 | 67 69 70 | expaddd | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( ( # ` z ) + ( # ` w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 72 | 65 71 | eqtrd | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( # ` ( z ++ w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 73 | 51 62 72 | 3eqtr3d | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 74 | oveq12 | |- ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) -> ( x ( +g ` S ) y ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
|
| 75 | 74 | fveq2d | |- ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) ) |
| 76 | oveq12 | |- ( ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) -> ( ( N ` x ) x. ( N ` y ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 77 | 75 76 | eqeqan12d | |- ( ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) /\ ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) <-> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 78 | 77 | an4s | |- ( ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) <-> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 79 | 73 78 | syl5ibrcom | |- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) ) |
| 80 | 79 | rexlimdvva | |- ( D e. V -> ( E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) ) |
| 81 | 1 33 2 | psgnvali | |- ( y e. dom N -> E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 82 | 34 81 | anim12i | |- ( ( x e. dom N /\ y e. dom N ) -> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 83 | reeanv | |- ( E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) <-> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
|
| 84 | 82 83 | sylibr | |- ( ( x e. dom N /\ y e. dom N ) -> E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 85 | 80 84 | impel | |- ( ( D e. V /\ ( x e. dom N /\ y e. dom N ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) |
| 86 | 11 12 16 22 25 27 48 85 | isghmd | |- ( D e. V -> N e. ( F GrpHom U ) ) |