This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| prodmolem2.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| prodmolem2.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| prodmolem2.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| prodmolem2.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| prodmolem2.8 | ⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) | ||
| prodmolem2.9 | ⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | ||
| Assertion | prodmolem2a | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | prodmolem2.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 5 | prodmolem2.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 6 | prodmolem2.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 7 | prodmolem2.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | prodmolem2.8 | ⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) | |
| 9 | prodmolem2.9 | ⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 10 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 11 | 10 8 | hasheqf1od | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 12 | 5 | nnnn0d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 13 | hashfz1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 15 | 11 14 | eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 𝑁 ) |
| 16 | 15 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) ) |
| 17 | isoeq4 | ⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) |
| 19 | 9 18 | mpbid | ⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
| 20 | isof1o | ⊢ ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) | |
| 21 | f1of | ⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) | |
| 22 | 19 20 21 | 3syl | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 23 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 24 | 5 23 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 25 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 27 | 22 26 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ 𝐴 ) |
| 28 | 7 27 | sseldd | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 | 19 20 | syl | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
| 31 | f1ocnvfv2 | ⊢ ( ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) = 𝑗 ) | |
| 32 | 30 31 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) = 𝑗 ) |
| 33 | f1ocnv | ⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) ) | |
| 34 | f1of | ⊢ ( ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) | |
| 35 | 30 33 34 | 3syl | ⊢ ( 𝜑 → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) |
| 36 | 35 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) |
| 37 | elfzle2 | ⊢ ( ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) → ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ) |
| 39 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
| 40 | fzssuz | ⊢ ( 1 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 1 ) | |
| 41 | uzssz | ⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ | |
| 42 | zssre | ⊢ ℤ ⊆ ℝ | |
| 43 | 41 42 | sstri | ⊢ ( ℤ≥ ‘ 1 ) ⊆ ℝ |
| 44 | 40 43 | sstri | ⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
| 45 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 46 | 44 45 | sstri | ⊢ ( 1 ... 𝑁 ) ⊆ ℝ* |
| 47 | 46 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 1 ... 𝑁 ) ⊆ ℝ* ) |
| 48 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 49 | 48 42 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 50 | 49 45 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ* |
| 51 | 7 50 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
| 53 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 54 | leisorel | ⊢ ( ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ∧ ( ( 1 ... 𝑁 ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) | |
| 55 | 39 47 52 36 53 54 | syl122anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 56 | 38 55 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) |
| 57 | 32 56 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) |
| 58 | 7 48 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) |
| 59 | 58 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℤ ) |
| 60 | eluzelz | ⊢ ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) | |
| 61 | 28 60 | syl | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
| 63 | eluz | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) ) | |
| 64 | 59 62 63 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
| 65 | 57 64 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 66 | elfzuzb | ⊢ ( 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ↔ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 67 | 29 65 66 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
| 68 | 67 | ex | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 → 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) ) |
| 69 | 68 | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
| 70 | 1 2 28 69 | fprodcvg | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) ) |
| 71 | mullid | ⊢ ( 𝑚 ∈ ℂ → ( 1 · 𝑚 ) = 𝑚 ) | |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 1 · 𝑚 ) = 𝑚 ) |
| 73 | mulrid | ⊢ ( 𝑚 ∈ ℂ → ( 𝑚 · 1 ) = 𝑚 ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 𝑚 · 1 ) = 𝑚 ) |
| 75 | mulcl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑚 · 𝑥 ) ∈ ℂ ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑚 · 𝑥 ) ∈ ℂ ) |
| 77 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 78 | 26 16 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 79 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) | |
| 80 | 79 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
| 81 | 80 2 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 82 | 81 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
| 83 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) | |
| 84 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 85 | 83 84 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 86 | 82 85 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 88 | 87 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
| 89 | elfzelz | ⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ ) | |
| 90 | ffvelcdm | ⊢ ( ( 𝐹 : ℤ ⟶ ℂ ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) | |
| 91 | 88 89 90 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 92 | fveqeq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 1 ↔ ( 𝐹 ‘ 𝑚 ) = 1 ) ) | |
| 93 | eldifi | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 94 | 93 | elfzelzd | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 95 | eldifn | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) | |
| 96 | 95 83 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
| 97 | 96 84 | eqeltrdi | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 98 | 1 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 99 | 94 97 98 | syl2anc | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 100 | 99 96 | eqtrd | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
| 101 | 92 100 | vtoclga | ⊢ ( 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
| 102 | 101 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
| 103 | isof1o | ⊢ ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 104 | f1of | ⊢ ( 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 105 | 9 103 104 | 3syl | ⊢ ( 𝜑 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 106 | 105 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) |
| 107 | 106 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 108 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ℤ ) |
| 109 | 108 106 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ℤ ) |
| 110 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 111 | nfv | ⊢ Ⅎ 𝑘 ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 | |
| 112 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 | |
| 113 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 114 | 111 112 113 | nfif | ⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) |
| 115 | 114 | nfel1 | ⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ |
| 116 | 110 115 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
| 117 | fvex | ⊢ ( 𝐾 ‘ 𝑥 ) ∈ V | |
| 118 | eleq1 | ⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( 𝑘 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 119 | csbeq1a | ⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) | |
| 120 | 118 119 | ifbieq1d | ⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 121 | 120 | eleq1d | ⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ↔ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) ) |
| 122 | 121 | imbi2d | ⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ↔ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) ) ) |
| 123 | 116 117 122 86 | vtoclf | ⊢ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
| 125 | eleq1 | ⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ( 𝑛 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 126 | csbeq1 | ⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) | |
| 127 | 125 126 | ifbieq1d | ⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 128 | nfcv | ⊢ Ⅎ 𝑛 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) | |
| 129 | nfv | ⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 | |
| 130 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 | |
| 131 | 129 130 113 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) |
| 132 | eleq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴 ) ) | |
| 133 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) | |
| 134 | 132 133 | ifbieq1d | ⊢ ( 𝑘 = 𝑛 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 135 | 128 131 134 | cbvmpt | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 136 | 1 135 | eqtri | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 137 | 127 136 | fvmptg | ⊢ ( ( ( 𝐾 ‘ 𝑥 ) ∈ ℤ ∧ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 138 | 109 124 137 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 139 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑥 ∈ ℕ ) | |
| 140 | 107 124 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 141 | fveq2 | ⊢ ( 𝑗 = 𝑥 → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑥 ) ) | |
| 142 | 141 | csbeq1d | ⊢ ( 𝑗 = 𝑥 → ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 143 | 142 4 | fvmptg | ⊢ ( ( 𝑥 ∈ ℕ ∧ ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 144 | 139 140 143 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 145 | 107 138 144 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
| 146 | 72 74 76 77 9 78 7 91 102 145 | seqcoll | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
| 147 | 5 5 | jca | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) |
| 148 | 1 2 3 4 147 8 30 | prodmolem3 | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
| 149 | 146 148 | eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) |
| 150 | 70 149 | breqtrd | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) |